Module livekit.agents.multimodal.multimodal_agent

Classes

class AgentTranscriptionOptions (user_transcription: bool = True, agent_transcription: bool = True, agent_transcription_speed: float = 1.0, sentence_tokenizer: tokenize.SentenceTokenizer = <livekit.agents.tokenize.basic.SentenceTokenizer object>, word_tokenizer: tokenize.WordTokenizer = <livekit.agents.tokenize.basic.WordTokenizer object>, hyphenate_word: Callable[[str], list[str]] = <function hyphenate_word>)

AgentTranscriptionOptions(user_transcription: 'bool' = True, agent_transcription: 'bool' = True, agent_transcription_speed: 'float' = 1.0, sentence_tokenizer: 'tokenize.SentenceTokenizer' = , word_tokenizer: 'tokenize.WordTokenizer' = , hyphenate_word: 'Callable[[str], list[str]]' = )

Expand source code
@dataclass(frozen=True)
class AgentTranscriptionOptions:
    user_transcription: bool = True
    """Whether to forward the user transcription to the client"""
    agent_transcription: bool = True
    """Whether to forward the agent transcription to the client"""
    agent_transcription_speed: float = 1.0
    """The speed at which the agent's speech transcription is forwarded to the client.
    We try to mimic the agent's speech speed by adjusting the transcription speed."""
    sentence_tokenizer: tokenize.SentenceTokenizer = tokenize.basic.SentenceTokenizer()
    """The tokenizer used to split the speech into sentences.
    This is used to decide when to mark a transcript as final for the agent transcription."""
    word_tokenizer: tokenize.WordTokenizer = tokenize.basic.WordTokenizer(
        ignore_punctuation=False
    )
    """The tokenizer used to split the speech into words.
    This is used to simulate the "interim results" of the agent transcription."""
    hyphenate_word: Callable[[str], list[str]] = tokenize.basic.hyphenate_word
    """A function that takes a string (word) as input and returns a list of strings,
    representing the hyphenated parts of the word."""

Class variables

var agent_transcription : bool

Whether to forward the agent transcription to the client

var agent_transcription_speed : float

The speed at which the agent's speech transcription is forwarded to the client. We try to mimic the agent's speech speed by adjusting the transcription speed.

var sentence_tokenizerSentenceTokenizer

The tokenizer used to split the speech into sentences. This is used to decide when to mark a transcript as final for the agent transcription.

var user_transcription : bool

Whether to forward the user transcription to the client

var word_tokenizerWordTokenizer

The tokenizer used to split the speech into words. This is used to simulate the "interim results" of the agent transcription.

Methods

def hyphenate_word(word: str) ‑> list[str]
class MultimodalAgent (*, model: S2SModel, vad: vad.VAD | None = None, chat_ctx: llm.ChatContext | None = None, fnc_ctx: llm.FunctionContext | None = None, transcription: AgentTranscriptionOptions = AgentTranscriptionOptions(user_transcription=True, agent_transcription=True, agent_transcription_speed=1.0, sentence_tokenizer=<livekit.agents.tokenize.basic.SentenceTokenizer object>, word_tokenizer=<livekit.agents.tokenize.basic.WordTokenizer object>, hyphenate_word=<function hyphenate_word>), loop: asyncio.AbstractEventLoop | None = None)

Abstract base class for generic types.

On Python 3.12 and newer, generic classes implicitly inherit from Generic when they declare a parameter list after the class's name::

class Mapping[KT, VT]:
    def __getitem__(self, key: KT) -> VT:
        ...
    # Etc.

On older versions of Python, however, generic classes have to explicitly inherit from Generic.

After a class has been declared to be generic, it can then be used as follows::

def lookup_name[KT, VT](mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
    try:
        return mapping[key]
    except KeyError:
        return default

Initialize a new instance of EventEmitter.

Expand source code
class MultimodalAgent(utils.EventEmitter[EventTypes]):
    def __init__(
        self,
        *,
        model: S2SModel,
        vad: vad.VAD | None = None,
        chat_ctx: llm.ChatContext | None = None,
        fnc_ctx: llm.FunctionContext | None = None,
        transcription: AgentTranscriptionOptions = AgentTranscriptionOptions(),
        loop: asyncio.AbstractEventLoop | None = None,
    ):
        super().__init__()
        self._loop = loop or asyncio.get_event_loop()

        from livekit.plugins.openai import realtime

        assert isinstance(model, realtime.RealtimeModel)

        self._model = model
        self._vad = vad
        self._chat_ctx = chat_ctx
        self._fnc_ctx = fnc_ctx

        self._opts = _ImplOptions(
            transcription=transcription,
        )

        # audio input
        self._read_micro_atask: asyncio.Task | None = None
        self._subscribed_track: rtc.RemoteAudioTrack | None = None
        self._input_audio_ch = utils.aio.Chan[rtc.AudioFrame]()

        # audio output
        self._playing_handle: agent_playout.PlayoutHandle | None = None

        self._linked_participant: rtc.RemoteParticipant | None = None
        self._started, self._closed = False, False

        self._update_state_task: asyncio.Task | None = None
        self._http_session: aiohttp.ClientSession | None = None

    @property
    def vad(self) -> vad.VAD | None:
        return self._vad

    @property
    def fnc_ctx(self) -> llm.FunctionContext | None:
        return self._session.fnc_ctx

    @fnc_ctx.setter
    def fnc_ctx(self, value: llm.FunctionContext | None) -> None:
        self._session.fnc_ctx = value

    def start(
        self, room: rtc.Room, participant: rtc.RemoteParticipant | str | None = None
    ) -> None:
        if self._started:
            raise RuntimeError("voice assistant already started")

        room.on("participant_connected", self._on_participant_connected)
        room.on("track_published", self._subscribe_to_microphone)
        room.on("track_subscribed", self._subscribe_to_microphone)

        self._room, self._participant = room, participant

        if participant is not None:
            if isinstance(participant, rtc.RemoteParticipant):
                self._link_participant(participant.identity)
            else:
                self._link_participant(participant)
        else:
            # no participant provided, try to find the first participant in the room
            for participant in self._room.remote_participants.values():
                self._link_participant(participant.identity)
                break

        self._session = self._model.session(
            chat_ctx=self._chat_ctx, fnc_ctx=self._fnc_ctx
        )
        self._main_atask = asyncio.create_task(self._main_task())

        from livekit.plugins.openai import realtime

        @self._session.on("response_content_added")
        def _on_content_added(message: realtime.RealtimeContent):
            tr_fwd = transcription.TTSSegmentsForwarder(
                room=self._room,
                participant=self._room.local_participant,
                speed=self._opts.transcription.agent_transcription_speed,
                sentence_tokenizer=self._opts.transcription.sentence_tokenizer,
                word_tokenizer=self._opts.transcription.word_tokenizer,
                hyphenate_word=self._opts.transcription.hyphenate_word,
            )

            self._playing_handle = self._agent_playout.play(
                item_id=message.item_id,
                content_index=message.content_index,
                transcription_fwd=tr_fwd,
                text_stream=message.text_stream,
                audio_stream=message.audio_stream,
            )

        @self._session.on("input_speech_committed")
        def _input_speech_committed():
            self._stt_forwarder.update(
                stt.SpeechEvent(
                    type=stt.SpeechEventType.INTERIM_TRANSCRIPT,
                    alternatives=[stt.SpeechData(language="", text="")],
                )
            )

        @self._session.on("input_speech_transcription_completed")
        def _input_speech_transcription_completed(
            ev: realtime.InputTranscriptionCompleted,
        ):
            self._stt_forwarder.update(
                stt.SpeechEvent(
                    type=stt.SpeechEventType.FINAL_TRANSCRIPT,
                    alternatives=[stt.SpeechData(language="", text=ev.transcript)],
                )
            )

        @self._session.on("input_speech_started")
        def _input_speech_started():
            self._update_state("listening")
            if self._playing_handle is not None and not self._playing_handle.done():
                self._playing_handle.interrupt()

                self._session.conversation.item.truncate(
                    item_id=self._playing_handle.item_id,
                    content_index=self._playing_handle.content_index,
                    audio_end_ms=int(self._playing_handle.audio_samples / 24000 * 1000),
                )

                self._playing_handle = None

    def _update_state(self, state: AgentState, delay: float = 0.0):
        """Set the current state of the agent"""

        @utils.log_exceptions(logger=logger)
        async def _run_task(delay: float) -> None:
            await asyncio.sleep(delay)

            if self._room.isconnected():
                await self._room.local_participant.set_attributes(
                    {ATTRIBUTE_AGENT_STATE: state}
                )

        if self._update_state_task is not None:
            self._update_state_task.cancel()

        self._update_state_task = asyncio.create_task(_run_task(delay))

    @utils.log_exceptions(logger=logger)
    async def _main_task(self) -> None:
        self._update_state("initializing")
        self._audio_source = rtc.AudioSource(24000, 1)
        self._agent_playout = agent_playout.AgentPlayout(
            audio_source=self._audio_source
        )

        def _on_playout_started() -> None:
            self.emit("agent_started_speaking")
            self._update_state("speaking")

        def _on_playout_stopped(interrupted: bool) -> None:
            self.emit("agent_stopped_speaking")
            self._update_state("listening")

        self._agent_playout.on("playout_started", _on_playout_started)
        self._agent_playout.on("playout_stopped", _on_playout_stopped)

        track = rtc.LocalAudioTrack.create_audio_track(
            "assistant_voice", self._audio_source
        )
        self._agent_publication = await self._room.local_participant.publish_track(
            track, rtc.TrackPublishOptions(source=rtc.TrackSource.SOURCE_MICROPHONE)
        )

        await self._agent_publication.wait_for_subscription()

        bstream = utils.audio.AudioByteStream(
            24000,
            1,
            samples_per_channel=2400,
        )
        async for frame in self._input_audio_ch:
            for f in bstream.write(frame.data.tobytes()):
                self._session.input_audio_buffer.append(f)

    def _on_participant_connected(self, participant: rtc.RemoteParticipant):
        if self._linked_participant is None:
            return

        self._link_participant(participant.identity)

    def _link_participant(self, participant_identity: str) -> None:
        self._linked_participant = self._room.remote_participants.get(
            participant_identity
        )
        if self._linked_participant is None:
            logger.error("_link_participant must be called with a valid identity")
            return

        self._subscribe_to_microphone()

    async def _micro_task(self, track: rtc.LocalAudioTrack) -> None:
        stream_24khz = rtc.AudioStream(track, sample_rate=24000, num_channels=1)
        async for ev in stream_24khz:
            self._input_audio_ch.send_nowait(ev.frame)

    def _subscribe_to_microphone(self, *args, **kwargs) -> None:
        """Subscribe to the participant microphone if found"""

        if self._linked_participant is None:
            return

        for publication in self._linked_participant.track_publications.values():
            if publication.source != rtc.TrackSource.SOURCE_MICROPHONE:
                continue

            if not publication.subscribed:
                publication.set_subscribed(True)

            if (
                publication.track is not None
                and publication.track != self._subscribed_track
            ):
                self._subscribed_track = publication.track  # type: ignore
                self._stt_forwarder = transcription.STTSegmentsForwarder(
                    room=self._room,
                    participant=self._linked_participant,
                    track=self._subscribed_track,
                )

                if self._read_micro_atask is not None:
                    self._read_micro_atask.cancel()

                self._read_micro_atask = asyncio.create_task(
                    self._micro_task(self._subscribed_track)  # type: ignore
                )
                break

    def _ensure_session(self) -> aiohttp.ClientSession:
        if not self._http_session:
            self._http_session = utils.http_context.http_session()

        return self._http_session

Ancestors

Instance variables

prop fnc_ctx : llm.FunctionContext | None
Expand source code
@property
def fnc_ctx(self) -> llm.FunctionContext | None:
    return self._session.fnc_ctx
prop vad : vad.VAD | None
Expand source code
@property
def vad(self) -> vad.VAD | None:
    return self._vad

Methods

def start(self, room: rtc.Room, participant: rtc.RemoteParticipant | str | None = None) ‑> None

Inherited members

class S2SModel (*args, **kwargs)

Base class for protocol classes.

Protocol classes are defined as::

class Proto(Protocol):
    def meth(self) -> int:
        ...

Such classes are primarily used with static type checkers that recognize structural subtyping (static duck-typing).

For example::

class C:
    def meth(self) -> int:
        return 0

def func(x: Proto) -> int:
    return x.meth()

func(C())  # Passes static type check

See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures. Protocol classes can be generic, they are defined as::

class GenProto[T](Protocol):
    def meth(self) -> T:
        ...
Expand source code
class S2SModel(Protocol): ...

Ancestors

  • typing.Protocol
  • typing.Generic