Module livekit.plugins.openai.realtime

Classes

class RealtimeModel (*,
model: str = 'gpt-4o-realtime-preview',
voice: str = 'alloy',
modalities: "NotGivenOr[list[Literal['text', 'audio']]]" = NOT_GIVEN,
temperature: NotGivenOr[float] = NOT_GIVEN,
tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
base_url: NotGivenOr[str] = NOT_GIVEN,
input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
input_audio_noise_reduction: InputAudioNoiseReduction | None = None,
turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
speed: NotGivenOr[float] = NOT_GIVEN,
tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
api_key: str | None = None,
http_session: aiohttp.ClientSession | None = None,
azure_deployment: str | None = None,
entra_token: str | None = None,
api_version: str | None = None,
max_session_duration: NotGivenOr[float | None] = NOT_GIVEN,
conn_options: APIConnectOptions = APIConnectOptions(max_retry=3, retry_interval=2.0, timeout=10.0))
Expand source code
class RealtimeModel(llm.RealtimeModel):
    @overload
    def __init__(
        self,
        *,
        model: str = "gpt-4o-realtime-preview",
        voice: str = "alloy",
        modalities: NotGivenOr[list[Literal["text", "audio"]]] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: InputAudioNoiseReduction | None = None,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        temperature: NotGivenOr[float] = NOT_GIVEN,
        tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
        api_key: str | None = None,
        base_url: NotGivenOr[str] = NOT_GIVEN,
        http_session: aiohttp.ClientSession | None = None,
        max_session_duration: NotGivenOr[float | None] = NOT_GIVEN,
        conn_options: APIConnectOptions = DEFAULT_API_CONNECT_OPTIONS,
    ) -> None: ...

    @overload
    def __init__(
        self,
        *,
        azure_deployment: str | None = None,
        entra_token: str | None = None,
        api_key: str | None = None,
        api_version: str | None = None,
        base_url: NotGivenOr[str] = NOT_GIVEN,
        voice: str = "alloy",
        modalities: NotGivenOr[list[Literal["text", "audio"]]] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: InputAudioNoiseReduction | None = None,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        temperature: NotGivenOr[float] = NOT_GIVEN,
        tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
        http_session: aiohttp.ClientSession | None = None,
        max_session_duration: NotGivenOr[float | None] = NOT_GIVEN,
        conn_options: APIConnectOptions = DEFAULT_API_CONNECT_OPTIONS,
    ) -> None: ...

    def __init__(
        self,
        *,
        model: str = "gpt-4o-realtime-preview",
        voice: str = "alloy",
        modalities: NotGivenOr[list[Literal["text", "audio"]]] = NOT_GIVEN,
        temperature: NotGivenOr[float] = NOT_GIVEN,
        tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
        base_url: NotGivenOr[str] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: InputAudioNoiseReduction | None = None,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
        api_key: str | None = None,
        http_session: aiohttp.ClientSession | None = None,
        azure_deployment: str | None = None,
        entra_token: str | None = None,
        api_version: str | None = None,
        max_session_duration: NotGivenOr[float | None] = NOT_GIVEN,
        conn_options: APIConnectOptions = DEFAULT_API_CONNECT_OPTIONS,
    ) -> None:
        modalities = modalities if is_given(modalities) else ["text", "audio"]
        super().__init__(
            capabilities=llm.RealtimeCapabilities(
                message_truncation=True,
                turn_detection=turn_detection is not None,
                user_transcription=input_audio_transcription is not None,
                auto_tool_reply_generation=False,
                audio_output="audio" in modalities,
            )
        )

        is_azure = (
            api_version is not None or entra_token is not None or azure_deployment is not None
        )

        api_key = api_key or os.environ.get("OPENAI_API_KEY")
        if api_key is None and not is_azure:
            raise ValueError(
                "The api_key client option must be set either by passing api_key "
                "to the client or by setting the OPENAI_API_KEY environment variable"
            )

        if is_given(base_url):
            base_url_val = base_url
        else:
            if is_azure:
                azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
                if azure_endpoint is None:
                    raise ValueError(
                        "Missing Azure endpoint. Please pass base_url "
                        "or set AZURE_OPENAI_ENDPOINT environment variable."
                    )
                base_url_val = f"{azure_endpoint.rstrip('/')}/openai"
            else:
                base_url_val = OPENAI_BASE_URL

        self._opts = _RealtimeOptions(
            model=model,
            voice=voice,
            temperature=temperature if is_given(temperature) else DEFAULT_TEMPERATURE,
            tool_choice=tool_choice or None,
            modalities=modalities,
            input_audio_transcription=input_audio_transcription
            if is_given(input_audio_transcription)
            else DEFAULT_INPUT_AUDIO_TRANSCRIPTION,
            input_audio_noise_reduction=input_audio_noise_reduction,
            turn_detection=turn_detection if is_given(turn_detection) else DEFAULT_TURN_DETECTION,
            api_key=api_key,
            base_url=base_url_val,
            is_azure=is_azure,
            azure_deployment=azure_deployment,
            entra_token=entra_token,
            api_version=api_version,
            max_response_output_tokens=DEFAULT_MAX_RESPONSE_OUTPUT_TOKENS,  # type: ignore
            speed=speed if is_given(speed) else None,
            tracing=cast(Union[Tracing, None], tracing) if is_given(tracing) else None,
            max_session_duration=max_session_duration
            if is_given(max_session_duration)
            else DEFAULT_MAX_SESSION_DURATION,
            conn_options=conn_options,
        )
        self._http_session = http_session
        self._http_session_owned = False
        self._sessions = weakref.WeakSet[RealtimeSession]()

    @classmethod
    def with_azure(
        cls,
        *,
        azure_deployment: str,
        azure_endpoint: str | None = None,
        api_version: str | None = None,
        api_key: str | None = None,
        entra_token: str | None = None,
        base_url: str | None = None,
        voice: str = "alloy",
        modalities: NotGivenOr[list[Literal["text", "audio"]]] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: InputAudioNoiseReduction | None = None,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        temperature: float = 0.8,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
        http_session: aiohttp.ClientSession | None = None,
    ) -> RealtimeModel:
        """
        Create a RealtimeClient instance configured for Azure OpenAI Service.

        Args:
            azure_deployment (str): The name of your Azure OpenAI deployment.
            azure_endpoint (str or None, optional): The endpoint URL for your Azure OpenAI resource. If None, will attempt to read from the environment variable AZURE_OPENAI_ENDPOINT.
            api_version (str or None, optional): API version to use with Azure OpenAI Service. If None, will attempt to read from the environment variable OPENAI_API_VERSION.
            api_key (str or None, optional): Azure OpenAI API key. If None, will attempt to read from the environment variable AZURE_OPENAI_API_KEY.
            entra_token (str or None, optional): Azure Entra authentication token. Required if not using API key authentication.
            base_url (str or None, optional): Base URL for the API endpoint. If None, constructed from the azure_endpoint.
            voice (api_proto.Voice, optional): Voice setting for audio outputs. Defaults to "alloy".
            modalities (list[Literal["text", "audio"]], optional): Modalities to use for the session. Defaults to ["text", "audio"].
            input_audio_transcription (InputTranscriptionOptions, optional): Options for transcribing input audio. Defaults to DEFAULT_INPUT_AUDIO_TRANSCRIPTION.
            input_audio_noise_reduction (InputAudioNoiseReduction or None, optional): Options for input audio noise reduction. `near_field` is for close-talking microphones such as headphones, `far_field` is for far-field microphones such as laptop or conference room microphones. Defaults to None.
            turn_detection (ServerVadOptions, optional): Options for server-based voice activity detection (VAD). Defaults to DEFAULT_SERVER_VAD_OPTIONS.
            temperature (float, optional): Sampling temperature for response generation. Defaults to 0.8.
            max_response_output_tokens (int or Literal["inf"], optional): Maximum number of tokens in the response. Defaults to "inf".
            http_session (aiohttp.ClientSession or None, optional): Async HTTP session to use for requests. If None, a new session will be created.

        Returns:
            RealtimeClient: An instance of RealtimeClient configured for Azure OpenAI Service.

        Raises:
            ValueError: If required Azure parameters are missing or invalid.
        """  # noqa: E501
        api_key = api_key or os.getenv("AZURE_OPENAI_API_KEY")
        if api_key is None and entra_token is None:
            raise ValueError(
                "Missing credentials. Please pass one of `api_key`, `entra_token`, "
                "or the `AZURE_OPENAI_API_KEY` environment variable."
            )

        api_version = api_version or os.getenv("OPENAI_API_VERSION")
        if api_version is None:
            raise ValueError(
                "Must provide either the `api_version` argument or the "
                "`OPENAI_API_VERSION` environment variable"
            )

        if base_url is None:
            azure_endpoint = azure_endpoint or os.getenv("AZURE_OPENAI_ENDPOINT")
            if azure_endpoint is None:
                raise ValueError(
                    "Missing Azure endpoint. Please pass the `azure_endpoint` "
                    "parameter or set the `AZURE_OPENAI_ENDPOINT` environment variable."
                )

            base_url = f"{azure_endpoint.rstrip('/')}/openai"
        elif azure_endpoint is not None:
            raise ValueError("base_url and azure_endpoint are mutually exclusive")

        if not is_given(input_audio_transcription):
            input_audio_transcription = AZURE_DEFAULT_INPUT_AUDIO_TRANSCRIPTION

        if not is_given(turn_detection):
            turn_detection = AZURE_DEFAULT_TURN_DETECTION

        return cls(
            voice=voice,
            modalities=modalities,
            input_audio_transcription=input_audio_transcription,
            input_audio_noise_reduction=input_audio_noise_reduction,
            turn_detection=turn_detection,
            temperature=temperature,
            speed=speed,
            tracing=tracing,
            api_key=api_key,
            http_session=http_session,
            azure_deployment=azure_deployment,
            api_version=api_version,
            entra_token=entra_token,
            base_url=base_url,
        )

    def update_options(
        self,
        *,
        voice: NotGivenOr[str] = NOT_GIVEN,
        temperature: NotGivenOr[float] = NOT_GIVEN,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: NotGivenOr[InputAudioNoiseReduction | None] = NOT_GIVEN,
        max_response_output_tokens: NotGivenOr[int | Literal["inf"] | None] = NOT_GIVEN,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
    ) -> None:
        if is_given(voice):
            self._opts.voice = voice

        if is_given(temperature):
            self._opts.temperature = temperature

        if is_given(turn_detection):
            self._opts.turn_detection = turn_detection

        if is_given(tool_choice):
            self._opts.tool_choice = cast(Optional[llm.ToolChoice], tool_choice)

        if is_given(input_audio_transcription):
            self._opts.input_audio_transcription = input_audio_transcription

        if is_given(input_audio_noise_reduction):
            self._opts.input_audio_noise_reduction = input_audio_noise_reduction

        if is_given(max_response_output_tokens):
            self._opts.max_response_output_tokens = max_response_output_tokens  # type: ignore

        if is_given(speed):
            self._opts.speed = speed

        if is_given(tracing):
            self._opts.tracing = cast(Union[Tracing, None], tracing)

        for sess in self._sessions:
            sess.update_options(
                voice=voice,
                temperature=temperature,
                turn_detection=turn_detection,
                tool_choice=tool_choice,
                input_audio_transcription=input_audio_transcription,
                max_response_output_tokens=max_response_output_tokens,
                speed=speed,
                tracing=tracing,
            )

    def _ensure_http_session(self) -> aiohttp.ClientSession:
        if not self._http_session:
            try:
                self._http_session = utils.http_context.http_session()
            except RuntimeError:
                self._http_session = aiohttp.ClientSession()
                self._http_session_owned = True

        return self._http_session

    def session(self) -> RealtimeSession:
        sess = RealtimeSession(self)
        self._sessions.add(sess)
        return sess

    async def aclose(self) -> None:
        if self._http_session_owned and self._http_session:
            await self._http_session.close()

Ancestors

  • livekit.agents.llm.realtime.RealtimeModel

Static methods

def with_azure(*,
azure_deployment: str,
azure_endpoint: str | None = None,
api_version: str | None = None,
api_key: str | None = None,
entra_token: str | None = None,
base_url: str | None = None,
voice: str = 'alloy',
modalities: "NotGivenOr[list[Literal['text', 'audio']]]" = NOT_GIVEN,
input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
input_audio_noise_reduction: InputAudioNoiseReduction | None = None,
turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
temperature: float = 0.8,
speed: NotGivenOr[float] = NOT_GIVEN,
tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
http_session: aiohttp.ClientSession | None = None) ‑> livekit.plugins.openai.realtime.realtime_model.RealtimeModel

Create a RealtimeClient instance configured for Azure OpenAI Service.

Args

azure_deployment : str
The name of your Azure OpenAI deployment.
azure_endpoint : str or None, optional
The endpoint URL for your Azure OpenAI resource. If None, will attempt to read from the environment variable AZURE_OPENAI_ENDPOINT.
api_version : str or None, optional
API version to use with Azure OpenAI Service. If None, will attempt to read from the environment variable OPENAI_API_VERSION.
api_key : str or None, optional
Azure OpenAI API key. If None, will attempt to read from the environment variable AZURE_OPENAI_API_KEY.
entra_token : str or None, optional
Azure Entra authentication token. Required if not using API key authentication.
base_url : str or None, optional
Base URL for the API endpoint. If None, constructed from the azure_endpoint.
voice : api_proto.Voice, optional
Voice setting for audio outputs. Defaults to "alloy".
modalities (list[Literal["text", "audio"]], optional): Modalities to use for the session. Defaults to ["text", "audio"].
input_audio_transcription : InputTranscriptionOptions, optional
Options for transcribing input audio. Defaults to DEFAULT_INPUT_AUDIO_TRANSCRIPTION.
input_audio_noise_reduction : InputAudioNoiseReduction or None, optional
Options for input audio noise reduction. near_field is for close-talking microphones such as headphones, far_field is for far-field microphones such as laptop or conference room microphones. Defaults to None.
turn_detection : ServerVadOptions, optional
Options for server-based voice activity detection (VAD). Defaults to DEFAULT_SERVER_VAD_OPTIONS.
temperature : float, optional
Sampling temperature for response generation. Defaults to 0.8.
max_response_output_tokens (int or Literal["inf"], optional): Maximum number of tokens in the response. Defaults to "inf".
http_session : aiohttp.ClientSession or None, optional
Async HTTP session to use for requests. If None, a new session will be created.

Returns

RealtimeClient
An instance of RealtimeClient configured for Azure OpenAI Service.

Raises

ValueError
If required Azure parameters are missing or invalid.

Methods

async def aclose(self) ‑> None
Expand source code
async def aclose(self) -> None:
    if self._http_session_owned and self._http_session:
        await self._http_session.close()
def session(self) ‑> livekit.plugins.openai.realtime.realtime_model.RealtimeSession
Expand source code
def session(self) -> RealtimeSession:
    sess = RealtimeSession(self)
    self._sessions.add(sess)
    return sess
def update_options(self,
*,
voice: NotGivenOr[str] = NOT_GIVEN,
temperature: NotGivenOr[float] = NOT_GIVEN,
turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
input_audio_noise_reduction: NotGivenOr[InputAudioNoiseReduction | None] = NOT_GIVEN,
max_response_output_tokens: "NotGivenOr[int | Literal['inf'] | None]" = NOT_GIVEN,
speed: NotGivenOr[float] = NOT_GIVEN,
tracing: NotGivenOr[Tracing | None] = NOT_GIVEN) ‑> None
Expand source code
def update_options(
    self,
    *,
    voice: NotGivenOr[str] = NOT_GIVEN,
    temperature: NotGivenOr[float] = NOT_GIVEN,
    turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
    tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
    input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
    input_audio_noise_reduction: NotGivenOr[InputAudioNoiseReduction | None] = NOT_GIVEN,
    max_response_output_tokens: NotGivenOr[int | Literal["inf"] | None] = NOT_GIVEN,
    speed: NotGivenOr[float] = NOT_GIVEN,
    tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
) -> None:
    if is_given(voice):
        self._opts.voice = voice

    if is_given(temperature):
        self._opts.temperature = temperature

    if is_given(turn_detection):
        self._opts.turn_detection = turn_detection

    if is_given(tool_choice):
        self._opts.tool_choice = cast(Optional[llm.ToolChoice], tool_choice)

    if is_given(input_audio_transcription):
        self._opts.input_audio_transcription = input_audio_transcription

    if is_given(input_audio_noise_reduction):
        self._opts.input_audio_noise_reduction = input_audio_noise_reduction

    if is_given(max_response_output_tokens):
        self._opts.max_response_output_tokens = max_response_output_tokens  # type: ignore

    if is_given(speed):
        self._opts.speed = speed

    if is_given(tracing):
        self._opts.tracing = cast(Union[Tracing, None], tracing)

    for sess in self._sessions:
        sess.update_options(
            voice=voice,
            temperature=temperature,
            turn_detection=turn_detection,
            tool_choice=tool_choice,
            input_audio_transcription=input_audio_transcription,
            max_response_output_tokens=max_response_output_tokens,
            speed=speed,
            tracing=tracing,
        )
class RealtimeSession (realtime_model: RealtimeModel)
Expand source code
class RealtimeSession(
    llm.RealtimeSession[Literal["openai_server_event_received", "openai_client_event_queued"]]
):
    """
    A session for the OpenAI Realtime API.

    This class is used to interact with the OpenAI Realtime API.
    It is responsible for sending events to the OpenAI Realtime API and receiving events from it.

    It exposes two more events:
    - openai_server_event_received: expose the raw server events from the OpenAI Realtime API
    - openai_client_event_queued: expose the raw client events sent to the OpenAI Realtime API
    """

    def __init__(self, realtime_model: RealtimeModel) -> None:
        super().__init__(realtime_model)
        self._realtime_model: RealtimeModel = realtime_model
        self._tools = llm.ToolContext.empty()
        self._msg_ch = utils.aio.Chan[Union[RealtimeClientEvent, dict[str, Any]]]()
        self._input_resampler: rtc.AudioResampler | None = None

        self._instructions: str | None = None
        self._main_atask = asyncio.create_task(self._main_task(), name="RealtimeSession._main_task")
        self.send_event(self._create_session_update_event())

        self._response_created_futures: dict[str, asyncio.Future[llm.GenerationCreatedEvent]] = {}
        self._item_delete_future: dict[str, asyncio.Future] = {}
        self._item_create_future: dict[str, asyncio.Future] = {}

        self._current_generation: _ResponseGeneration | None = None
        self._remote_chat_ctx = llm.remote_chat_context.RemoteChatContext()

        self._update_chat_ctx_lock = asyncio.Lock()
        self._update_fnc_ctx_lock = asyncio.Lock()

        # 100ms chunks
        self._bstream = utils.audio.AudioByteStream(
            SAMPLE_RATE, NUM_CHANNELS, samples_per_channel=SAMPLE_RATE // 10
        )
        self._pushed_duration_s: float = 0  # duration of audio pushed to the OpenAI Realtime API

    def send_event(self, event: RealtimeClientEvent | dict[str, Any]) -> None:
        with contextlib.suppress(utils.aio.channel.ChanClosed):
            self._msg_ch.send_nowait(event)

    @utils.log_exceptions(logger=logger)
    async def _main_task(self) -> None:
        num_retries: int = 0
        max_retries = self._realtime_model._opts.conn_options.max_retry

        async def _reconnect() -> None:
            logger.debug(
                "reconnecting to OpenAI Realtime API",
                extra={"max_session_duration": self._realtime_model._opts.max_session_duration},
            )

            events: list[RealtimeClientEvent] = []

            # options and instructions
            events.append(self._create_session_update_event())

            # tools
            tools = list(self._tools.function_tools.values())
            if tools:
                events.append(self._create_tools_update_event(tools))

            # chat context
            chat_ctx = self.chat_ctx.copy(
                exclude_function_call=True,
                exclude_instructions=True,
                exclude_empty_message=True,
            )
            old_chat_ctx_copy = copy.deepcopy(self._remote_chat_ctx)
            self._remote_chat_ctx = llm.remote_chat_context.RemoteChatContext()
            events.extend(self._create_update_chat_ctx_events(chat_ctx))

            try:
                for ev in events:
                    msg = ev.model_dump(by_alias=True, exclude_unset=True, exclude_defaults=False)
                    self.emit("openai_client_event_queued", msg)
                    await ws_conn.send_str(json.dumps(msg))
            except Exception as e:
                self._remote_chat_ctx = old_chat_ctx_copy  # restore the old chat context
                raise APIConnectionError(
                    message=(
                        "Failed to send message to OpenAI Realtime API during session re-connection"
                    ),
                ) from e

            logger.debug("reconnected to OpenAI Realtime API")
            self.emit("session_reconnected", llm.RealtimeSessionReconnectedEvent())

        reconnecting = False
        while not self._msg_ch.closed:
            try:
                ws_conn = await self._create_ws_conn()
                if reconnecting:
                    await _reconnect()
                    num_retries = 0  # reset the retry counter
                await self._run_ws(ws_conn)

            except APIError as e:
                if max_retries == 0 or not e.retryable:
                    self._emit_error(e, recoverable=False)
                    raise
                elif num_retries == max_retries:
                    self._emit_error(e, recoverable=False)
                    raise APIConnectionError(
                        f"OpenAI Realtime API connection failed after {num_retries} attempts",
                    ) from e
                else:
                    self._emit_error(e, recoverable=True)

                    retry_interval = self._realtime_model._opts.conn_options._interval_for_retry(
                        num_retries
                    )
                    logger.warning(
                        f"OpenAI Realtime API connection failed, retrying in {retry_interval}s",
                        exc_info=e,
                        extra={"attempt": num_retries, "max_retries": max_retries},
                    )
                    await asyncio.sleep(retry_interval)
                num_retries += 1

            except Exception as e:
                self._emit_error(e, recoverable=False)
                raise

            reconnecting = True

    async def _create_ws_conn(self) -> aiohttp.ClientWebSocketResponse:
        headers = {"User-Agent": "LiveKit Agents"}
        if self._realtime_model._opts.is_azure:
            if self._realtime_model._opts.entra_token:
                headers["Authorization"] = f"Bearer {self._realtime_model._opts.entra_token}"

            if self._realtime_model._opts.api_key:
                headers["api-key"] = self._realtime_model._opts.api_key
        else:
            headers["Authorization"] = f"Bearer {self._realtime_model._opts.api_key}"
            headers["OpenAI-Beta"] = "realtime=v1"

        url = process_base_url(
            self._realtime_model._opts.base_url,
            self._realtime_model._opts.model,
            is_azure=self._realtime_model._opts.is_azure,
            api_version=self._realtime_model._opts.api_version,
            azure_deployment=self._realtime_model._opts.azure_deployment,
        )

        if lk_oai_debug:
            logger.debug(f"connecting to Realtime API: {url}")

        try:
            return await asyncio.wait_for(
                self._realtime_model._ensure_http_session().ws_connect(url=url, headers=headers),
                self._realtime_model._opts.conn_options.timeout,
            )
        except asyncio.TimeoutError as e:
            raise APIConnectionError(
                message="OpenAI Realtime API connection timed out",
            ) from e

    async def _run_ws(self, ws_conn: aiohttp.ClientWebSocketResponse) -> None:
        closing = False

        @utils.log_exceptions(logger=logger)
        async def _send_task() -> None:
            nonlocal closing
            async for msg in self._msg_ch:
                try:
                    if isinstance(msg, BaseModel):
                        msg = msg.model_dump(
                            by_alias=True, exclude_unset=True, exclude_defaults=False
                        )

                    self.emit("openai_client_event_queued", msg)
                    await ws_conn.send_str(json.dumps(msg))

                    if lk_oai_debug:
                        msg_copy = msg.copy()
                        if msg_copy["type"] == "input_audio_buffer.append":
                            msg_copy = {**msg_copy, "audio": "..."}

                        logger.debug(f">>> {msg_copy}")
                except Exception:
                    break

            closing = True
            await ws_conn.close()

        @utils.log_exceptions(logger=logger)
        async def _recv_task() -> None:
            while True:
                msg = await ws_conn.receive()
                if msg.type in (
                    aiohttp.WSMsgType.CLOSED,
                    aiohttp.WSMsgType.CLOSE,
                    aiohttp.WSMsgType.CLOSING,
                ):
                    if closing:  # closing is expected, see _send_task
                        return

                    # this will trigger a reconnection
                    raise APIConnectionError(message="OpenAI S2S connection closed unexpectedly")

                if msg.type != aiohttp.WSMsgType.TEXT:
                    continue

                event = json.loads(msg.data)

                # emit the raw json dictionary instead of the BaseModel because different
                # providers can have different event types that are not part of the OpenAI Realtime API  # noqa: E501
                self.emit("openai_server_event_received", event)

                try:
                    if lk_oai_debug:
                        event_copy = event.copy()
                        if event_copy["type"] == "response.audio.delta":
                            event_copy = {**event_copy, "delta": "..."}

                        logger.debug(f"<<< {event_copy}")

                    if event["type"] == "input_audio_buffer.speech_started":
                        self._handle_input_audio_buffer_speech_started(
                            InputAudioBufferSpeechStartedEvent.construct(**event)
                        )
                    elif event["type"] == "input_audio_buffer.speech_stopped":
                        self._handle_input_audio_buffer_speech_stopped(
                            InputAudioBufferSpeechStoppedEvent.construct(**event)
                        )
                    elif event["type"] == "response.created":
                        self._handle_response_created(ResponseCreatedEvent.construct(**event))
                    elif event["type"] == "response.output_item.added":
                        self._handle_response_output_item_added(
                            ResponseOutputItemAddedEvent.construct(**event)
                        )
                    elif event["type"] == "response.content_part.added":
                        self._handle_response_content_part_added(
                            ResponseContentPartAddedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.created":
                        self._handle_conversion_item_created(
                            ConversationItemCreatedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.deleted":
                        self._handle_conversion_item_deleted(
                            ConversationItemDeletedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.input_audio_transcription.completed":
                        self._handle_conversion_item_input_audio_transcription_completed(
                            ConversationItemInputAudioTranscriptionCompletedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.input_audio_transcription.failed":
                        self._handle_conversion_item_input_audio_transcription_failed(
                            ConversationItemInputAudioTranscriptionFailedEvent.construct(**event)
                        )
                    elif event["type"] == "response.text.delta":
                        self._handle_response_text_delta(ResponseTextDeltaEvent.construct(**event))
                    elif event["type"] == "response.text.done":
                        self._handle_response_text_done(ResponseTextDoneEvent.construct(**event))
                    elif event["type"] == "response.audio_transcript.delta":
                        self._handle_response_audio_transcript_delta(event)
                    elif event["type"] == "response.audio.delta":
                        self._handle_response_audio_delta(
                            ResponseAudioDeltaEvent.construct(**event)
                        )
                    elif event["type"] == "response.audio_transcript.done":
                        self._handle_response_audio_transcript_done(
                            ResponseAudioTranscriptDoneEvent.construct(**event)
                        )
                    elif event["type"] == "response.audio.done":
                        self._handle_response_audio_done(ResponseAudioDoneEvent.construct(**event))
                    elif event["type"] == "response.output_item.done":
                        self._handle_response_output_item_done(
                            ResponseOutputItemDoneEvent.construct(**event)
                        )
                    elif event["type"] == "response.done":
                        self._handle_response_done(ResponseDoneEvent.construct(**event))
                    elif event["type"] == "error":
                        self._handle_error(ErrorEvent.construct(**event))
                except Exception:
                    if event["type"] == "response.audio.delta":
                        event["delta"] = event["delta"][:10] + "..."
                    logger.exception("failed to handle event", extra={"event": event})

        tasks = [
            asyncio.create_task(_recv_task(), name="_recv_task"),
            asyncio.create_task(_send_task(), name="_send_task"),
        ]
        wait_reconnect_task: asyncio.Task | None = None
        if self._realtime_model._opts.max_session_duration is not None:
            wait_reconnect_task = asyncio.create_task(
                asyncio.sleep(self._realtime_model._opts.max_session_duration),
                name="_timeout_task",
            )
            tasks.append(wait_reconnect_task)
        try:
            done, _ = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)

            # propagate exceptions from completed tasks
            for task in done:
                if task != wait_reconnect_task:
                    task.result()

            if wait_reconnect_task and wait_reconnect_task in done and self._current_generation:
                # wait for the current generation to complete before reconnecting
                await self._current_generation._done_fut
                closing = True

        finally:
            await utils.aio.cancel_and_wait(*tasks)
            await ws_conn.close()

    def _create_session_update_event(self) -> SessionUpdateEvent:
        input_audio_transcription_opts = self._realtime_model._opts.input_audio_transcription
        input_audio_transcription = (
            session_update_event.SessionInputAudioTranscription.model_validate(
                input_audio_transcription_opts.model_dump(
                    by_alias=True,
                    exclude_unset=True,
                    exclude_defaults=True,
                )
            )
            if input_audio_transcription_opts
            else None
        )

        turn_detection_opts = self._realtime_model._opts.turn_detection
        turn_detection = (
            session_update_event.SessionTurnDetection.model_validate(
                turn_detection_opts.model_dump(
                    by_alias=True,
                    exclude_unset=True,
                    exclude_defaults=True,
                )
            )
            if turn_detection_opts
            else None
        )

        tracing_opts = self._realtime_model._opts.tracing
        if isinstance(tracing_opts, TracingTracingConfiguration):
            tracing: session_update_event.SessionTracing | None = (
                session_update_event.SessionTracingTracingConfiguration.model_validate(
                    tracing_opts.model_dump(
                        by_alias=True,
                        exclude_unset=True,
                        exclude_defaults=True,
                    )
                )
            )
        else:
            tracing = tracing_opts

        kwargs: dict[str, Any] = {
            "model": self._realtime_model._opts.model,
            "voice": self._realtime_model._opts.voice,
            "input_audio_format": "pcm16",
            "output_audio_format": "pcm16",
            "modalities": self._realtime_model._opts.modalities,
            "turn_detection": turn_detection,
            "input_audio_transcription": input_audio_transcription,
            "input_audio_noise_reduction": self._realtime_model._opts.input_audio_noise_reduction,
            "temperature": self._realtime_model._opts.temperature,
            "tool_choice": _to_oai_tool_choice(self._realtime_model._opts.tool_choice),
        }
        if self._instructions is not None:
            kwargs["instructions"] = self._instructions

        if self._realtime_model._opts.speed is not None:
            kwargs["speed"] = self._realtime_model._opts.speed

        if tracing:
            kwargs["tracing"] = tracing

        # initial session update
        return SessionUpdateEvent(
            type="session.update",
            # Using model_construct since OpenAI restricts voices to those defined in the BaseModel.  # noqa: E501
            # Other providers support different voices, so we need to accommodate that.
            session=session_update_event.Session.model_construct(**kwargs),
            event_id=utils.shortuuid("session_update_"),
        )

    @property
    def chat_ctx(self) -> llm.ChatContext:
        return self._remote_chat_ctx.to_chat_ctx()

    @property
    def tools(self) -> llm.ToolContext:
        return self._tools.copy()

    def update_options(
        self,
        *,
        tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
        voice: NotGivenOr[str] = NOT_GIVEN,
        temperature: NotGivenOr[float] = NOT_GIVEN,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        max_response_output_tokens: NotGivenOr[int | Literal["inf"] | None] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: NotGivenOr[InputAudioNoiseReduction | None] = NOT_GIVEN,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
    ) -> None:
        kwargs: dict[str, Any] = {}

        if is_given(tool_choice):
            tool_choice = cast(Optional[llm.ToolChoice], tool_choice)
            self._realtime_model._opts.tool_choice = tool_choice
            kwargs["tool_choice"] = _to_oai_tool_choice(tool_choice)

        if is_given(voice):
            self._realtime_model._opts.voice = voice
            kwargs["voice"] = voice

        if is_given(temperature):
            self._realtime_model._opts.temperature = temperature
            kwargs["temperature"] = temperature

        if is_given(turn_detection):
            self._realtime_model._opts.turn_detection = turn_detection
            kwargs["turn_detection"] = turn_detection

        if is_given(max_response_output_tokens):
            self._realtime_model._opts.max_response_output_tokens = max_response_output_tokens  # type: ignore
            kwargs["max_response_output_tokens"] = max_response_output_tokens

        if is_given(input_audio_transcription):
            self._realtime_model._opts.input_audio_transcription = input_audio_transcription
            kwargs["input_audio_transcription"] = input_audio_transcription

        if is_given(input_audio_noise_reduction):
            self._realtime_model._opts.input_audio_noise_reduction = input_audio_noise_reduction
            kwargs["input_audio_noise_reduction"] = input_audio_noise_reduction

        if is_given(speed):
            self._realtime_model._opts.speed = speed
            kwargs["speed"] = speed

        if is_given(tracing):
            self._realtime_model._opts.tracing = cast(Union[Tracing, None], tracing)
            kwargs["tracing"] = cast(Union[Tracing, None], tracing)

        if kwargs:
            self.send_event(
                SessionUpdateEvent(
                    type="session.update",
                    session=session_update_event.Session.model_construct(**kwargs),
                    event_id=utils.shortuuid("options_update_"),
                )
            )

    async def update_chat_ctx(self, chat_ctx: llm.ChatContext) -> None:
        async with self._update_chat_ctx_lock:
            events = self._create_update_chat_ctx_events(chat_ctx)
            futs: list[asyncio.Future[None]] = []

            for ev in events:
                futs.append(f := asyncio.Future[None]())
                if isinstance(ev, ConversationItemDeleteEvent):
                    self._item_delete_future[ev.item_id] = f
                elif isinstance(ev, ConversationItemCreateEvent):
                    assert ev.item.id is not None
                    self._item_create_future[ev.item.id] = f
                self.send_event(ev)

            if not futs:
                return
            try:
                await asyncio.wait_for(asyncio.gather(*futs, return_exceptions=True), timeout=5.0)
            except asyncio.TimeoutError:
                raise llm.RealtimeError("update_chat_ctx timed out.") from None

    def _create_update_chat_ctx_events(
        self, chat_ctx: llm.ChatContext
    ) -> list[ConversationItemCreateEvent | ConversationItemDeleteEvent]:
        events: list[ConversationItemCreateEvent | ConversationItemDeleteEvent] = []
        diff_ops = llm.utils.compute_chat_ctx_diff(self._remote_chat_ctx.to_chat_ctx(), chat_ctx)

        def _delete_item(msg_id: str) -> None:
            events.append(
                ConversationItemDeleteEvent(
                    type="conversation.item.delete",
                    item_id=msg_id,
                    event_id=utils.shortuuid("chat_ctx_delete_"),
                )
            )

        def _create_item(previous_msg_id: str | None, msg_id: str) -> None:
            chat_item = chat_ctx.get_by_id(msg_id)
            assert chat_item is not None
            events.append(
                ConversationItemCreateEvent(
                    type="conversation.item.create",
                    item=_livekit_item_to_openai_item(chat_item),
                    previous_item_id=("root" if previous_msg_id is None else previous_msg_id),
                    event_id=utils.shortuuid("chat_ctx_create_"),
                )
            )

        for msg_id in diff_ops.to_remove:
            _delete_item(msg_id)

        for previous_msg_id, msg_id in diff_ops.to_create:
            _create_item(previous_msg_id, msg_id)

        # update the items with the same id but different content
        for previous_msg_id, msg_id in diff_ops.to_update:
            _delete_item(msg_id)
            _create_item(previous_msg_id, msg_id)

        return events

    async def update_tools(self, tools: list[llm.FunctionTool | llm.RawFunctionTool]) -> None:
        async with self._update_fnc_ctx_lock:
            ev = self._create_tools_update_event(tools)
            self.send_event(ev)

            assert ev.session.tools is not None
            retained_tool_names = {name for t in ev.session.tools if (name := t.name) is not None}
            retained_tools = [
                tool
                for tool in tools
                if (is_function_tool(tool) and get_function_info(tool).name in retained_tool_names)
                or (
                    is_raw_function_tool(tool)
                    and get_raw_function_info(tool).name in retained_tool_names
                )
            ]
            self._tools = llm.ToolContext(retained_tools)

    def _create_tools_update_event(
        self, tools: list[llm.FunctionTool | llm.RawFunctionTool]
    ) -> SessionUpdateEvent:
        oai_tools: list[session_update_event.SessionTool] = []
        retained_tools: list[llm.FunctionTool | llm.RawFunctionTool] = []

        for tool in tools:
            if is_function_tool(tool):
                tool_desc = llm.utils.build_legacy_openai_schema(tool, internally_tagged=True)
            elif is_raw_function_tool(tool):
                tool_info = get_raw_function_info(tool)
                tool_desc = tool_info.raw_schema
                tool_desc["type"] = "function"  # internally tagged
            else:
                logger.error(
                    "OpenAI Realtime API doesn't support this tool type", extra={"tool": tool}
                )
                continue

            try:
                session_tool = session_update_event.SessionTool.model_validate(tool_desc)
                oai_tools.append(session_tool)
                retained_tools.append(tool)
            except ValidationError:
                logger.error(
                    "OpenAI Realtime API doesn't support this tool",
                    extra={"tool": tool_desc},
                )
                continue

        return SessionUpdateEvent(
            type="session.update",
            session=session_update_event.Session.model_construct(
                model=self._realtime_model._opts.model,
                tools=oai_tools,
            ),
            event_id=utils.shortuuid("tools_update_"),
        )

    async def update_instructions(self, instructions: str) -> None:
        event_id = utils.shortuuid("instructions_update_")
        # f = asyncio.Future()
        # self._response_futures[event_id] = f
        self.send_event(
            SessionUpdateEvent(
                type="session.update",
                session=session_update_event.Session.model_construct(instructions=instructions),
                event_id=event_id,
            )
        )
        self._instructions = instructions

    def push_audio(self, frame: rtc.AudioFrame) -> None:
        for f in self._resample_audio(frame):
            data = f.data.tobytes()
            for nf in self._bstream.write(data):
                self.send_event(
                    InputAudioBufferAppendEvent(
                        type="input_audio_buffer.append",
                        audio=base64.b64encode(nf.data).decode("utf-8"),
                    )
                )
                self._pushed_duration_s += nf.duration

    def push_video(self, frame: rtc.VideoFrame) -> None:
        pass

    def commit_audio(self) -> None:
        if self._pushed_duration_s > 0.1:  # OpenAI requires at least 100ms of audio
            self.send_event(InputAudioBufferCommitEvent(type="input_audio_buffer.commit"))
            self._pushed_duration_s = 0

    def clear_audio(self) -> None:
        self.send_event(InputAudioBufferClearEvent(type="input_audio_buffer.clear"))
        self._pushed_duration_s = 0

    def generate_reply(
        self, *, instructions: NotGivenOr[str] = NOT_GIVEN
    ) -> asyncio.Future[llm.GenerationCreatedEvent]:
        event_id = utils.shortuuid("response_create_")
        fut = asyncio.Future[llm.GenerationCreatedEvent]()
        self._response_created_futures[event_id] = fut
        self.send_event(
            ResponseCreateEvent(
                type="response.create",
                event_id=event_id,
                response=Response(
                    instructions=instructions or None,
                    metadata={"client_event_id": event_id},
                ),
            )
        )

        def _on_timeout() -> None:
            if fut and not fut.done():
                fut.set_exception(llm.RealtimeError("generate_reply timed out."))

        handle = asyncio.get_event_loop().call_later(5.0, _on_timeout)
        fut.add_done_callback(lambda _: handle.cancel())
        return fut

    def interrupt(self) -> None:
        self.send_event(ResponseCancelEvent(type="response.cancel"))

    def truncate(
        self,
        *,
        message_id: str,
        modalities: list[Literal["text", "audio"]],
        audio_end_ms: int,
        audio_transcript: NotGivenOr[str] = NOT_GIVEN,
    ) -> None:
        if "audio" in modalities:
            self.send_event(
                ConversationItemTruncateEvent(
                    type="conversation.item.truncate",
                    content_index=0,
                    item_id=message_id,
                    audio_end_ms=audio_end_ms,
                )
            )
        elif utils.is_given(audio_transcript):
            # sync the forwarded text to the remote chat ctx
            chat_ctx = self.chat_ctx.copy()
            if (idx := chat_ctx.index_by_id(message_id)) is not None:
                new_item = copy.copy(chat_ctx.items[idx])
                assert new_item.type == "message"

                new_item.content = [audio_transcript]
                chat_ctx.items[idx] = new_item
                events = self._create_update_chat_ctx_events(chat_ctx)
                for ev in events:
                    self.send_event(ev)

    async def aclose(self) -> None:
        self._msg_ch.close()
        await self._main_atask

    def _resample_audio(self, frame: rtc.AudioFrame) -> Iterator[rtc.AudioFrame]:
        if self._input_resampler:
            if frame.sample_rate != self._input_resampler._input_rate:
                # input audio changed to a different sample rate
                self._input_resampler = None

        if self._input_resampler is None and (
            frame.sample_rate != SAMPLE_RATE or frame.num_channels != NUM_CHANNELS
        ):
            self._input_resampler = rtc.AudioResampler(
                input_rate=frame.sample_rate,
                output_rate=SAMPLE_RATE,
                num_channels=NUM_CHANNELS,
            )

        if self._input_resampler:
            # TODO(long): flush the resampler when the input source is changed
            yield from self._input_resampler.push(frame)
        else:
            yield frame

    def _handle_input_audio_buffer_speech_started(
        self, _: InputAudioBufferSpeechStartedEvent
    ) -> None:
        self.emit("input_speech_started", llm.InputSpeechStartedEvent())

    def _handle_input_audio_buffer_speech_stopped(
        self, _: InputAudioBufferSpeechStoppedEvent
    ) -> None:
        user_transcription_enabled = (
            self._realtime_model._opts.input_audio_transcription is not None
        )
        self.emit(
            "input_speech_stopped",
            llm.InputSpeechStoppedEvent(user_transcription_enabled=user_transcription_enabled),
        )

    def _handle_response_created(self, event: ResponseCreatedEvent) -> None:
        assert event.response.id is not None, "response.id is None"

        self._current_generation = _ResponseGeneration(
            message_ch=utils.aio.Chan(),
            function_ch=utils.aio.Chan(),
            messages={},
            _created_timestamp=time.time(),
            _done_fut=asyncio.Future(),
        )

        generation_ev = llm.GenerationCreatedEvent(
            message_stream=self._current_generation.message_ch,
            function_stream=self._current_generation.function_ch,
            user_initiated=False,
        )

        if (
            isinstance(event.response.metadata, dict)
            and (client_event_id := event.response.metadata.get("client_event_id"))
            and (fut := self._response_created_futures.pop(client_event_id, None))
        ):
            generation_ev.user_initiated = True
            fut.set_result(generation_ev)

        self.emit("generation_created", generation_ev)

    def _handle_response_output_item_added(self, event: ResponseOutputItemAddedEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        assert (item_id := event.item.id) is not None, "item.id is None"
        assert (item_type := event.item.type) is not None, "item.type is None"

        if item_type == "message":
            item_generation = _MessageGeneration(
                message_id=item_id,
                text_ch=utils.aio.Chan(),
                audio_ch=utils.aio.Chan(),
                modalities=asyncio.Future(),
            )
            if not self._realtime_model.capabilities.audio_output:
                item_generation.audio_ch.close()
                item_generation.modalities.set_result(["text"])

            self._current_generation.message_ch.send_nowait(
                llm.MessageGeneration(
                    message_id=item_id,
                    text_stream=item_generation.text_ch,
                    audio_stream=item_generation.audio_ch,
                    modalities=item_generation.modalities,
                )
            )
            self._current_generation.messages[item_id] = item_generation

    def _handle_response_content_part_added(self, event: ResponseContentPartAddedEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        assert (item_id := event.item_id) is not None, "item_id is None"
        assert (item_type := event.part.type) is not None, "part.type is None"

        if item_type == "text" and self._realtime_model.capabilities.audio_output:
            logger.warning("Text response received from OpenAI Realtime API in audio modality.")

        with contextlib.suppress(asyncio.InvalidStateError):
            self._current_generation.messages[item_id].modalities.set_result(
                ["text"] if item_type == "text" else ["audio", "text"]
            )

    def _handle_conversion_item_created(self, event: ConversationItemCreatedEvent) -> None:
        assert event.item.id is not None, "item.id is None"

        try:
            self._remote_chat_ctx.insert(
                event.previous_item_id, _openai_item_to_livekit_item(event.item)
            )
        except ValueError as e:
            logger.warning(
                f"failed to insert item `{event.item.id}`: {str(e)}",
            )

        if fut := self._item_create_future.pop(event.item.id, None):
            fut.set_result(None)

    def _handle_conversion_item_deleted(self, event: ConversationItemDeletedEvent) -> None:
        assert event.item_id is not None, "item_id is None"

        try:
            self._remote_chat_ctx.delete(event.item_id)
        except ValueError as e:
            logger.warning(
                f"failed to delete item `{event.item_id}`: {str(e)}",
            )

        if fut := self._item_delete_future.pop(event.item_id, None):
            fut.set_result(None)

    def _handle_conversion_item_input_audio_transcription_completed(
        self, event: ConversationItemInputAudioTranscriptionCompletedEvent
    ) -> None:
        if remote_item := self._remote_chat_ctx.get(event.item_id):
            assert isinstance(remote_item.item, llm.ChatMessage)
            remote_item.item.content.append(event.transcript)

        self.emit(
            "input_audio_transcription_completed",
            llm.InputTranscriptionCompleted(
                item_id=event.item_id,
                transcript=event.transcript,
                is_final=True,
            ),
        )

    def _handle_conversion_item_input_audio_transcription_failed(
        self, event: ConversationItemInputAudioTranscriptionFailedEvent
    ) -> None:
        logger.error(
            "OpenAI Realtime API failed to transcribe input audio",
            extra={"error": event.error},
        )

    def _handle_response_text_delta(self, event: ResponseTextDeltaEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        item_generation = self._current_generation.messages[event.item_id]

        item_generation.text_ch.send_nowait(event.delta)
        item_generation.audio_transcript += event.delta

    def _handle_response_text_done(self, event: ResponseTextDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"

    def _handle_response_audio_transcript_delta(self, event: dict[str, Any]) -> None:
        assert self._current_generation is not None, "current_generation is None"

        item_id = event["item_id"]
        delta = event["delta"]

        if (start_time := event.get("start_time")) is not None:
            delta = io.TimedString(delta, start_time=start_time)

        item_generation = self._current_generation.messages[item_id]
        item_generation.text_ch.send_nowait(delta)
        item_generation.audio_transcript += delta

    def _handle_response_audio_delta(self, event: ResponseAudioDeltaEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        item_generation = self._current_generation.messages[event.item_id]

        if not item_generation.modalities.done():
            item_generation.modalities.set_result(["audio", "text"])

        data = base64.b64decode(event.delta)
        item_generation.audio_ch.send_nowait(
            rtc.AudioFrame(
                data=data,
                sample_rate=SAMPLE_RATE,
                num_channels=NUM_CHANNELS,
                samples_per_channel=len(data) // 2,
            )
        )

    def _handle_response_audio_transcript_done(self, _: ResponseAudioTranscriptDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"

    def _handle_response_audio_done(self, _: ResponseAudioDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"

    def _handle_response_output_item_done(self, event: ResponseOutputItemDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        assert (item_id := event.item.id) is not None, "item.id is None"
        assert (item_type := event.item.type) is not None, "item.type is None"

        if item_type == "function_call":
            item = event.item
            assert item.call_id is not None, "call_id is None"
            assert item.name is not None, "name is None"
            assert item.arguments is not None, "arguments is None"

            self._current_generation.function_ch.send_nowait(
                llm.FunctionCall(
                    call_id=item.call_id,
                    name=item.name,
                    arguments=item.arguments,
                )
            )
        elif item_type == "message":
            item_generation = self._current_generation.messages[item_id]
            item_generation.text_ch.close()
            item_generation.audio_ch.close()
            if not item_generation.modalities.done():
                # in case message modalities is not set, this shouldn't happen
                item_generation.modalities.set_result(self._realtime_model._opts.modalities)

    def _handle_response_done(self, event: ResponseDoneEvent) -> None:
        if self._current_generation is None:
            return  # OpenAI has a race condition where we could receive response.done without any previous response.created (This happens generally during interruption)  # noqa: E501

        assert self._current_generation is not None, "current_generation is None"

        created_timestamp = self._current_generation._created_timestamp
        first_token_timestamp = self._current_generation._first_token_timestamp

        for generation in self._current_generation.messages.values():
            # close all messages that haven't been closed yet
            if not generation.text_ch.closed:
                generation.text_ch.close()
            if not generation.audio_ch.closed:
                generation.audio_ch.close()
            if not generation.modalities.done():
                generation.modalities.set_result(self._realtime_model._opts.modalities)

        self._current_generation.function_ch.close()
        self._current_generation.message_ch.close()
        for item_id, item_generation in self._current_generation.messages.items():
            if (remote_item := self._remote_chat_ctx.get(item_id)) and isinstance(
                remote_item.item, llm.ChatMessage
            ):
                remote_item.item.content.append(item_generation.audio_transcript)

        with contextlib.suppress(asyncio.InvalidStateError):
            self._current_generation._done_fut.set_result(None)
        self._current_generation = None

        # calculate metrics
        usage = (
            event.response.usage.model_dump(exclude_defaults=True) if event.response.usage else {}
        )
        ttft = first_token_timestamp - created_timestamp if first_token_timestamp else -1
        duration = time.time() - created_timestamp
        metrics = RealtimeModelMetrics(
            timestamp=created_timestamp,
            request_id=event.response.id or "",
            ttft=ttft,
            duration=duration,
            cancelled=event.response.status == "cancelled",
            label=self._realtime_model._label,
            input_tokens=usage.get("input_tokens", 0),
            output_tokens=usage.get("output_tokens", 0),
            total_tokens=usage.get("total_tokens", 0),
            tokens_per_second=usage.get("output_tokens", 0) / duration,
            input_token_details=RealtimeModelMetrics.InputTokenDetails(
                audio_tokens=usage.get("input_token_details", {}).get("audio_tokens", 0),
                cached_tokens=usage.get("input_token_details", {}).get("cached_tokens", 0),
                text_tokens=usage.get("input_token_details", {}).get("text_tokens", 0),
                cached_tokens_details=RealtimeModelMetrics.CachedTokenDetails(
                    text_tokens=usage.get("input_token_details", {})
                    .get("cached_tokens_details", {})
                    .get("text_tokens", 0),
                    audio_tokens=usage.get("input_token_details", {})
                    .get("cached_tokens_details", {})
                    .get("audio_tokens", 0),
                    image_tokens=usage.get("input_token_details", {})
                    .get("cached_tokens_details", {})
                    .get("image_tokens", 0),
                ),
                image_tokens=0,
            ),
            output_token_details=RealtimeModelMetrics.OutputTokenDetails(
                text_tokens=usage.get("output_token_details", {}).get("text_tokens", 0),
                audio_tokens=usage.get("output_token_details", {}).get("audio_tokens", 0),
                image_tokens=0,
            ),
        )
        self.emit("metrics_collected", metrics)
        self._handle_response_done_but_not_complete(event)

    def _handle_response_done_but_not_complete(self, event: ResponseDoneEvent) -> None:
        """Handle response done but not complete, i.e. cancelled, incomplete or failed.

        For example this method will emit an error if we receive a "failed" status, e.g.
        with type "invalid_request_error" due to code "inference_rate_limit_exceeded".

        In other failures it will emit a debug level log.
        """
        if event.response.status == "completed":
            return

        if event.response.status == "failed":
            if event.response.status_details and hasattr(event.response.status_details, "error"):
                error_type = getattr(event.response.status_details.error, "type", "unknown")
                error_body = event.response.status_details.error
                message = f"OpenAI Realtime API response failed with error type: {error_type}"
            else:
                error_body = None
                message = "OpenAI Realtime API response failed with unknown error"
            self._emit_error(
                APIError(
                    message=message,
                    body=error_body,
                    retryable=True,
                ),
                # all possible faulures undocumented by openai,
                # so we assume optimistically all retryable/recoverable
                recoverable=True,
            )
        elif event.response.status in {"cancelled", "incomplete"}:
            logger.debug(
                "OpenAI Realtime API response done but not complete with status: %s",
                event.response.status,
                extra={
                    "event_id": event.response.id,
                    "event_response_status": event.response.status,
                },
            )
        else:
            logger.debug("Unknown response status: %s", event.response.status)

    def _handle_error(self, event: ErrorEvent) -> None:
        if event.error.message.startswith("Cancellation failed"):
            return

        logger.error(
            "OpenAI Realtime API returned an error",
            extra={"error": event.error},
        )
        self._emit_error(
            APIError(
                message="OpenAI Realtime API returned an error",
                body=event.error,
                retryable=True,
            ),
            recoverable=True,
        )

        # TODO: set exception for the response future if it exists

    def _emit_error(self, error: Exception, recoverable: bool) -> None:
        self.emit(
            "error",
            llm.RealtimeModelError(
                timestamp=time.time(),
                label=self._realtime_model._label,
                error=error,
                recoverable=recoverable,
            ),
        )

A session for the OpenAI Realtime API.

This class is used to interact with the OpenAI Realtime API. It is responsible for sending events to the OpenAI Realtime API and receiving events from it.

It exposes two more events: - openai_server_event_received: expose the raw server events from the OpenAI Realtime API - openai_client_event_queued: expose the raw client events sent to the OpenAI Realtime API

Ancestors

  • livekit.agents.llm.realtime.RealtimeSession
  • abc.ABC
  • EventEmitter
  • typing.Generic

Instance variables

prop chat_ctx : llm.ChatContext
Expand source code
@property
def chat_ctx(self) -> llm.ChatContext:
    return self._remote_chat_ctx.to_chat_ctx()
prop tools : llm.ToolContext
Expand source code
@property
def tools(self) -> llm.ToolContext:
    return self._tools.copy()

Methods

async def aclose(self) ‑> None
Expand source code
async def aclose(self) -> None:
    self._msg_ch.close()
    await self._main_atask
def clear_audio(self) ‑> None
Expand source code
def clear_audio(self) -> None:
    self.send_event(InputAudioBufferClearEvent(type="input_audio_buffer.clear"))
    self._pushed_duration_s = 0
def commit_audio(self) ‑> None
Expand source code
def commit_audio(self) -> None:
    if self._pushed_duration_s > 0.1:  # OpenAI requires at least 100ms of audio
        self.send_event(InputAudioBufferCommitEvent(type="input_audio_buffer.commit"))
        self._pushed_duration_s = 0
def generate_reply(self, *, instructions: NotGivenOr[str] = NOT_GIVEN) ‑> _asyncio.Future[livekit.agents.llm.realtime.GenerationCreatedEvent]
Expand source code
def generate_reply(
    self, *, instructions: NotGivenOr[str] = NOT_GIVEN
) -> asyncio.Future[llm.GenerationCreatedEvent]:
    event_id = utils.shortuuid("response_create_")
    fut = asyncio.Future[llm.GenerationCreatedEvent]()
    self._response_created_futures[event_id] = fut
    self.send_event(
        ResponseCreateEvent(
            type="response.create",
            event_id=event_id,
            response=Response(
                instructions=instructions or None,
                metadata={"client_event_id": event_id},
            ),
        )
    )

    def _on_timeout() -> None:
        if fut and not fut.done():
            fut.set_exception(llm.RealtimeError("generate_reply timed out."))

    handle = asyncio.get_event_loop().call_later(5.0, _on_timeout)
    fut.add_done_callback(lambda _: handle.cancel())
    return fut
def interrupt(self) ‑> None
Expand source code
def interrupt(self) -> None:
    self.send_event(ResponseCancelEvent(type="response.cancel"))
def push_audio(self, frame: rtc.AudioFrame) ‑> None
Expand source code
def push_audio(self, frame: rtc.AudioFrame) -> None:
    for f in self._resample_audio(frame):
        data = f.data.tobytes()
        for nf in self._bstream.write(data):
            self.send_event(
                InputAudioBufferAppendEvent(
                    type="input_audio_buffer.append",
                    audio=base64.b64encode(nf.data).decode("utf-8"),
                )
            )
            self._pushed_duration_s += nf.duration
def push_video(self, frame: rtc.VideoFrame) ‑> None
Expand source code
def push_video(self, frame: rtc.VideoFrame) -> None:
    pass
def send_event(self, event: RealtimeClientEvent | dict[str, Any]) ‑> None
Expand source code
def send_event(self, event: RealtimeClientEvent | dict[str, Any]) -> None:
    with contextlib.suppress(utils.aio.channel.ChanClosed):
        self._msg_ch.send_nowait(event)
def truncate(self,
*,
message_id: str,
modalities: "list[Literal['text', 'audio']]",
audio_end_ms: int,
audio_transcript: NotGivenOr[str] = NOT_GIVEN) ‑> None
Expand source code
def truncate(
    self,
    *,
    message_id: str,
    modalities: list[Literal["text", "audio"]],
    audio_end_ms: int,
    audio_transcript: NotGivenOr[str] = NOT_GIVEN,
) -> None:
    if "audio" in modalities:
        self.send_event(
            ConversationItemTruncateEvent(
                type="conversation.item.truncate",
                content_index=0,
                item_id=message_id,
                audio_end_ms=audio_end_ms,
            )
        )
    elif utils.is_given(audio_transcript):
        # sync the forwarded text to the remote chat ctx
        chat_ctx = self.chat_ctx.copy()
        if (idx := chat_ctx.index_by_id(message_id)) is not None:
            new_item = copy.copy(chat_ctx.items[idx])
            assert new_item.type == "message"

            new_item.content = [audio_transcript]
            chat_ctx.items[idx] = new_item
            events = self._create_update_chat_ctx_events(chat_ctx)
            for ev in events:
                self.send_event(ev)
async def update_chat_ctx(self, chat_ctx: llm.ChatContext) ‑> None
Expand source code
async def update_chat_ctx(self, chat_ctx: llm.ChatContext) -> None:
    async with self._update_chat_ctx_lock:
        events = self._create_update_chat_ctx_events(chat_ctx)
        futs: list[asyncio.Future[None]] = []

        for ev in events:
            futs.append(f := asyncio.Future[None]())
            if isinstance(ev, ConversationItemDeleteEvent):
                self._item_delete_future[ev.item_id] = f
            elif isinstance(ev, ConversationItemCreateEvent):
                assert ev.item.id is not None
                self._item_create_future[ev.item.id] = f
            self.send_event(ev)

        if not futs:
            return
        try:
            await asyncio.wait_for(asyncio.gather(*futs, return_exceptions=True), timeout=5.0)
        except asyncio.TimeoutError:
            raise llm.RealtimeError("update_chat_ctx timed out.") from None
async def update_instructions(self, instructions: str) ‑> None
Expand source code
async def update_instructions(self, instructions: str) -> None:
    event_id = utils.shortuuid("instructions_update_")
    # f = asyncio.Future()
    # self._response_futures[event_id] = f
    self.send_event(
        SessionUpdateEvent(
            type="session.update",
            session=session_update_event.Session.model_construct(instructions=instructions),
            event_id=event_id,
        )
    )
    self._instructions = instructions
def update_options(self,
*,
tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
voice: NotGivenOr[str] = NOT_GIVEN,
temperature: NotGivenOr[float] = NOT_GIVEN,
turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
max_response_output_tokens: "NotGivenOr[int | Literal['inf'] | None]" = NOT_GIVEN,
input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
input_audio_noise_reduction: NotGivenOr[InputAudioNoiseReduction | None] = NOT_GIVEN,
speed: NotGivenOr[float] = NOT_GIVEN,
tracing: NotGivenOr[Tracing | None] = NOT_GIVEN) ‑> None
Expand source code
def update_options(
    self,
    *,
    tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
    voice: NotGivenOr[str] = NOT_GIVEN,
    temperature: NotGivenOr[float] = NOT_GIVEN,
    turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
    max_response_output_tokens: NotGivenOr[int | Literal["inf"] | None] = NOT_GIVEN,
    input_audio_transcription: NotGivenOr[InputAudioTranscription | None] = NOT_GIVEN,
    input_audio_noise_reduction: NotGivenOr[InputAudioNoiseReduction | None] = NOT_GIVEN,
    speed: NotGivenOr[float] = NOT_GIVEN,
    tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
) -> None:
    kwargs: dict[str, Any] = {}

    if is_given(tool_choice):
        tool_choice = cast(Optional[llm.ToolChoice], tool_choice)
        self._realtime_model._opts.tool_choice = tool_choice
        kwargs["tool_choice"] = _to_oai_tool_choice(tool_choice)

    if is_given(voice):
        self._realtime_model._opts.voice = voice
        kwargs["voice"] = voice

    if is_given(temperature):
        self._realtime_model._opts.temperature = temperature
        kwargs["temperature"] = temperature

    if is_given(turn_detection):
        self._realtime_model._opts.turn_detection = turn_detection
        kwargs["turn_detection"] = turn_detection

    if is_given(max_response_output_tokens):
        self._realtime_model._opts.max_response_output_tokens = max_response_output_tokens  # type: ignore
        kwargs["max_response_output_tokens"] = max_response_output_tokens

    if is_given(input_audio_transcription):
        self._realtime_model._opts.input_audio_transcription = input_audio_transcription
        kwargs["input_audio_transcription"] = input_audio_transcription

    if is_given(input_audio_noise_reduction):
        self._realtime_model._opts.input_audio_noise_reduction = input_audio_noise_reduction
        kwargs["input_audio_noise_reduction"] = input_audio_noise_reduction

    if is_given(speed):
        self._realtime_model._opts.speed = speed
        kwargs["speed"] = speed

    if is_given(tracing):
        self._realtime_model._opts.tracing = cast(Union[Tracing, None], tracing)
        kwargs["tracing"] = cast(Union[Tracing, None], tracing)

    if kwargs:
        self.send_event(
            SessionUpdateEvent(
                type="session.update",
                session=session_update_event.Session.model_construct(**kwargs),
                event_id=utils.shortuuid("options_update_"),
            )
        )
async def update_tools(self, tools: list[llm.FunctionTool | llm.RawFunctionTool]) ‑> None
Expand source code
async def update_tools(self, tools: list[llm.FunctionTool | llm.RawFunctionTool]) -> None:
    async with self._update_fnc_ctx_lock:
        ev = self._create_tools_update_event(tools)
        self.send_event(ev)

        assert ev.session.tools is not None
        retained_tool_names = {name for t in ev.session.tools if (name := t.name) is not None}
        retained_tools = [
            tool
            for tool in tools
            if (is_function_tool(tool) and get_function_info(tool).name in retained_tool_names)
            or (
                is_raw_function_tool(tool)
                and get_raw_function_info(tool).name in retained_tool_names
            )
        ]
        self._tools = llm.ToolContext(retained_tools)

Inherited members