Skip to main content

MCP Agent

Shows how to use a LiveKit Agent as an MCP client.

This example demonstrates how to run an agent as an MCP (Model Context Protocol) client. It connects to an MCP server over HTTP, handles voice I/O, and lets the LLM call MCP tools to fetch data.

Prerequisites

  • Add a .env in this directory with your LiveKit credentials:
    LIVEKIT_URL=your_livekit_url
    LIVEKIT_API_KEY=your_api_key
    LIVEKIT_API_SECRET=your_api_secret
  • Install dependencies:
    pip install "livekit-agents[silero]" python-dotenv

Load environment, logging, and define an AgentServer

Start by importing the required modules including the MCP client. The AgentServer wraps your application and manages the worker lifecycle.

import logging
from dotenv import load_dotenv
from livekit.agents import JobContext, JobProcess, Agent, AgentSession, AgentServer, cli, mcp
from livekit.plugins import silero
load_dotenv()
logger = logging.getLogger("mcp-agent")
logger.setLevel(logging.INFO)
server = AgentServer()

Prewarm VAD for faster connections

Preload the VAD model once per process. This runs before any sessions start and stores the VAD instance in proc.userdata so it can be reused, cutting down on connection latency.

def prewarm(proc: JobProcess):
proc.userdata["vad"] = silero.VAD.load()
server.setup_fnc = prewarm

Define a minimal agent

Keep the agent simple—just instructions explaining that it can retrieve data via MCP. The MCP tools become available automatically through the session configuration. Generate a greeting when the agent enters.

class MyAgent(Agent):
def __init__(self) -> None:
super().__init__(
instructions=(
"You can retrieve data via the MCP server. The interface is voice-based: "
"accept spoken user queries and respond with synthesized speech."
),
)
async def on_enter(self):
self.session.generate_reply()

Define the RTC session entrypoint with MCP configuration

Create an AgentSession with VAD and inference strings for STT, LLM, and TTS. The mcp_servers parameter accepts a list of MCP server connections—here we use MCPServerHTTP to connect to a remote endpoint. The LLM will automatically discover and use the tools exposed by the MCP server.

@server.rtc_session()
async def entrypoint(ctx: JobContext):
ctx.log_context_fields = {"room": ctx.room.name}
session = AgentSession(
vad=ctx.proc.userdata["vad"],
stt="deepgram/nova-3-general",
llm="openai/gpt-4.1-mini",
tts="cartesia/sonic-2:6f84f4b8-58a2-430c-8c79-688dad597532",
mcp_servers=[mcp.MCPServerHTTP(url="https://shayne.app/mcp")],
)
await session.start(agent=MyAgent(), room=ctx.room)
await ctx.connect()

Run the server

The cli.run_app() function starts the agent server and manages connections to LiveKit.

if __name__ == "__main__":
cli.run_app(server)

Run it

python http_mcp_client.py console

How it works

  1. The session connects to an MCP server over HTTP.
  2. The LLM automatically discovers tools exposed by the MCP server and can call them to satisfy user requests.

Full example

import logging
from dotenv import load_dotenv
from livekit.agents import JobContext, JobProcess, Agent, AgentSession, AgentServer, cli, mcp
from livekit.plugins import silero
load_dotenv()
logger = logging.getLogger("mcp-agent")
logger.setLevel(logging.INFO)
class MyAgent(Agent):
def __init__(self) -> None:
super().__init__(
instructions=(
"You can retrieve data via the MCP server. The interface is voice-based: "
"accept spoken user queries and respond with synthesized speech."
),
)
async def on_enter(self):
self.session.generate_reply()
server = AgentServer()
def prewarm(proc: JobProcess):
proc.userdata["vad"] = silero.VAD.load()
server.setup_fnc = prewarm
@server.rtc_session()
async def entrypoint(ctx: JobContext):
ctx.log_context_fields = {"room": ctx.room.name}
session = AgentSession(
vad=ctx.proc.userdata["vad"],
stt="deepgram/nova-3-general",
llm="openai/gpt-4.1-mini",
tts="cartesia/sonic-2:6f84f4b8-58a2-430c-8c79-688dad597532",
mcp_servers=[mcp.MCPServerHTTP(url="https://shayne.app/mcp")],
)
await session.start(agent=MyAgent(), room=ctx.room)
await ctx.connect()
if __name__ == "__main__":
cli.run_app(server)