This example configures an agent to finish speaking even if the user talks over it by disabling interruptions. The agent also seeds the first user input so you can test the behavior immediately.
Prerequisites
- Add a
.envin this directory with your LiveKit credentials:LIVEKIT_URL=your_livekit_urlLIVEKIT_API_KEY=your_api_keyLIVEKIT_API_SECRET=your_api_secret - Install dependencies:pip install "livekit-agents[silero]" python-dotenv
Load configuration and create the AgentServer
Load environment variables so the audio plugins can authenticate. Create an AgentServer to manage sessions.
from dotenv import load_dotenvfrom livekit.agents import JobContext, JobProcess, AgentServer, cli, Agent, AgentSession, inferencefrom livekit.plugins import sileroload_dotenv()server = AgentServer()
Prewarm VAD for faster connections
Preload the VAD model once per process to reduce connection latency.
def prewarm(proc: JobProcess):proc.userdata["vad"] = silero.VAD.load()server.setup_fnc = prewarm
Create a non-interruptable agent
Set allow_interruptions=False when constructing the agent. The agent class is lightweight—only instructions and the interruption setting are defined here.
class UninterruptableAgent(Agent):def __init__(self) -> None:super().__init__(instructions="""You are a helpful assistant communicating through voice who is not interruptable.""",allow_interruptions=False)async def on_enter(self):self.session.generate_reply(user_input="Say something somewhat long and boring so I can test if you're interruptable.")
Create the RTC session entrypoint
Create an AgentSession with STT/LLM/TTS/VAD configured, start the session with the agent, and connect to the room.
@server.rtc_session()async def entrypoint(ctx: JobContext):ctx.log_context_fields = {"room": ctx.room.name}session = AgentSession(stt=inference.STT(model="deepgram/nova-3-general"),llm=inference.LLM(model="openai/gpt-4.1-mini"),tts=inference.TTS(model="cartesia/sonic-3", voice="9626c31c-bec5-4cca-baa8-f8ba9e84c8bc"),vad=ctx.proc.userdata["vad"],preemptive_generation=True,)await session.start(agent=UninterruptableAgent(), room=ctx.room)await ctx.connect()
Run it
python uninterruptable.py console
How it works
allow_interruptions=Falsekeeps TTS playback intact even if new speech arrives.on_enterseeds a first prompt so you can test the behavior without speaking first.- The rest of the media pipeline remains unchanged from a standard agent.
- This setting is useful when you want to ensure an announcement completes before listening again.
Full example
from dotenv import load_dotenvfrom livekit.agents import JobContext, JobProcess, AgentServer, cli, Agent, AgentSession, inferencefrom livekit.plugins import sileroload_dotenv()class UninterruptableAgent(Agent):def __init__(self) -> None:super().__init__(instructions="""You are a helpful assistant communicating through voice who is not interruptable.""",allow_interruptions=False)async def on_enter(self):self.session.generate_reply(user_input="Say something somewhat long and boring so I can test if you're interruptable.")server = AgentServer()def prewarm(proc: JobProcess):proc.userdata["vad"] = silero.VAD.load()server.setup_fnc = prewarm@server.rtc_session()async def entrypoint(ctx: JobContext):ctx.log_context_fields = {"room": ctx.room.name}session = AgentSession(stt=inference.STT(model="deepgram/nova-3-general"),llm=inference.LLM(model="openai/gpt-4.1-mini"),tts=inference.TTS(model="cartesia/sonic-3", voice="9626c31c-bec5-4cca-baa8-f8ba9e84c8bc"),vad=ctx.proc.userdata["vad"],preemptive_generation=True,)await session.start(agent=UninterruptableAgent(), room=ctx.room)await ctx.connect()if __name__ == "__main__":cli.run_app(server)