Module livekit.plugins.xai.realtime

Sub-modules

livekit.plugins.xai.realtime.realtime_model
livekit.plugins.xai.realtime.types

Classes

class FileSearch (vector_store_ids: list[str] = <factory>,
max_num_results: int | None = None)
Expand source code
@dataclass(slots=True)
class FileSearch(XAITool):
    """Enable file search tool for searching uploaded document collections."""

    vector_store_ids: list[str] = field(default_factory=list)
    max_num_results: int | None = None

    def to_dict(self) -> dict[str, Any]:
        result: dict[str, Any] = {
            "type": "file_search",
            "vector_store_ids": self.vector_store_ids,
        }
        if self.max_num_results is not None:
            result["max_num_results"] = self.max_num_results

        return result

Enable file search tool for searching uploaded document collections.

Ancestors

  • XAITool
  • livekit.agents.llm.tool_context.ProviderTool
  • livekit.agents.llm.tool_context.Tool
  • abc.ABC

Instance variables

var max_num_results : int | None
Expand source code
@dataclass(slots=True)
class FileSearch(XAITool):
    """Enable file search tool for searching uploaded document collections."""

    vector_store_ids: list[str] = field(default_factory=list)
    max_num_results: int | None = None

    def to_dict(self) -> dict[str, Any]:
        result: dict[str, Any] = {
            "type": "file_search",
            "vector_store_ids": self.vector_store_ids,
        }
        if self.max_num_results is not None:
            result["max_num_results"] = self.max_num_results

        return result
var vector_store_ids : list[str]
Expand source code
@dataclass(slots=True)
class FileSearch(XAITool):
    """Enable file search tool for searching uploaded document collections."""

    vector_store_ids: list[str] = field(default_factory=list)
    max_num_results: int | None = None

    def to_dict(self) -> dict[str, Any]:
        result: dict[str, Any] = {
            "type": "file_search",
            "vector_store_ids": self.vector_store_ids,
        }
        if self.max_num_results is not None:
            result["max_num_results"] = self.max_num_results

        return result

Methods

def to_dict(self) ‑> dict[str, typing.Any]
Expand source code
def to_dict(self) -> dict[str, Any]:
    result: dict[str, Any] = {
        "type": "file_search",
        "vector_store_ids": self.vector_store_ids,
    }
    if self.max_num_results is not None:
        result["max_num_results"] = self.max_num_results

    return result
class RealtimeModel (*,
voice: Literal['Ara', 'Eve', 'Leo', 'Rex', 'Sal'] | str | livekit.agents.types.NotGiven | None = 'Ara',
api_key: str | None = None,
base_url: str | livekit.agents.types.NotGiven = NOT_GIVEN,
turn_detection: openai.types.beta.realtime.session.TurnDetection | livekit.agents.types.NotGiven | None = NOT_GIVEN,
http_session: aiohttp.client.ClientSession | None = None,
max_session_duration: float | livekit.agents.types.NotGiven | None = NOT_GIVEN,
conn_options: livekit.agents.types.APIConnectOptions = APIConnectOptions(max_retry=3, retry_interval=2.0, timeout=10.0))
Expand source code
class RealtimeModel(openai.realtime.RealtimeModel):
    def __init__(
        self,
        *,
        voice: NotGivenOr[GrokVoices | str | None] = "Ara",
        api_key: str | None = None,
        base_url: NotGivenOr[str] = NOT_GIVEN,
        turn_detection: NotGivenOr[TurnDetection | None] = NOT_GIVEN,
        http_session: aiohttp.ClientSession | None = None,
        max_session_duration: NotGivenOr[float | None] = NOT_GIVEN,
        conn_options: APIConnectOptions = DEFAULT_API_CONNECT_OPTIONS,
    ) -> None:
        api_key = api_key or os.environ.get("XAI_API_KEY")
        if api_key is None:
            raise ValueError(
                "The api_key client option must be set either by passing api_key "
                "to the client or by setting the XAI_API_KEY environment variable"
            )

        resolved_voice = voice if is_given(voice) else "Ara"
        super().__init__(
            base_url=base_url if is_given(base_url) else XAI_BASE_URL,
            model="grok-4-1-fast-non-reasoning",
            voice=resolved_voice,  # type: ignore[arg-type]
            api_key=api_key,
            modalities=["audio"],
            turn_detection=turn_detection
            if is_given(turn_detection)
            else XAI_DEFAULT_TURN_DETECTION,
            http_session=http_session if is_given(http_session) else None,
            max_session_duration=max_session_duration if is_given(max_session_duration) else None,
            conn_options=conn_options,
        )

    def session(self) -> "RealtimeSession":
        sess = RealtimeSession(self)
        self._sessions.add(sess)
        return sess

Initialize a Realtime model client for OpenAI or Azure OpenAI.

Args

model : str
Realtime model name, e.g., "gpt-realtime".
voice : str
Voice used for audio responses. Defaults to "marin".
modalities (list[Literal["text", "audio"]] | NotGiven): Modalities to enable. Defaults to ["text", "audio"] if not provided.
tool_choice : llm.ToolChoice | None | NotGiven
Tool selection policy for responses.
base_url : str | NotGiven
HTTP base URL of the OpenAI/Azure API. If not provided, uses OPENAI_BASE_URL for OpenAI; for Azure, constructed from AZURE_OPENAI_ENDPOINT.
input_audio_transcription : AudioTranscription | None | NotGiven
Options for transcribing input audio.
input_audio_noise_reduction : NoiseReductionType | NoiseReduction | InputAudioNoiseReduction | None | NotGiven
Input audio noise reduction settings.
turn_detection : RealtimeAudioInputTurnDetection | None | NotGiven
Server-side turn-detection options.
speed : float | NotGiven
Audio playback speed multiplier.
tracing : Tracing | None | NotGiven
Tracing configuration for OpenAI Realtime.
api_key : str | None
OpenAI API key. If None and not using Azure, read from OPENAI_API_KEY.
http_session : aiohttp.ClientSession | None
Optional shared HTTP session.
azure_deployment : str | None
Azure deployment name. Presence of any Azure-specific option enables Azure mode.
entra_token : str | None
Azure Entra token auth (alternative to api_key).
api_version : str | None
Azure OpenAI API version appended as query parameter.
max_session_duration : float | None | NotGiven
Seconds before recycling the connection.
conn_options : APIConnectOptions
Retry/backoff and connection settings.
temperature : float | NotGiven
Deprecated; ignored by Realtime v1.

Raises

ValueError
If OPENAI_API_KEY is missing in non-Azure mode, or if Azure endpoint cannot be determined when in Azure mode.

Examples

Basic OpenAI usage:

from livekit.plugins.openai.realtime import RealtimeModel
from openai.types import realtime

model = RealtimeModel(
    voice="marin",
    modalities=["audio"],
    input_audio_transcription=realtime.AudioTranscription(
        model="gpt-4o-transcribe",
    ),
    input_audio_noise_reduction="near_field",
    turn_detection=realtime.realtime_audio_input_turn_detection.SemanticVad(
        type="semantic_vad",
        create_response=True,
        eagerness="auto",
        interrupt_response=True,
    ),
)
session = AgentSession(llm=model)

Ancestors

  • livekit.plugins.openai.realtime.realtime_model.RealtimeModel
  • livekit.agents.llm.realtime.RealtimeModel

Methods

def session(self) ‑> RealtimeSession
Expand source code
def session(self) -> "RealtimeSession":
    sess = RealtimeSession(self)
    self._sessions.add(sess)
    return sess
class RealtimeSession (realtime_model: RealtimeModel)
Expand source code
class RealtimeSession(
    llm.RealtimeSession[Literal["openai_server_event_received", "openai_client_event_queued"]]
):
    """
    A session for the OpenAI Realtime API.

    This class is used to interact with the OpenAI Realtime API.
    It is responsible for sending events to the OpenAI Realtime API and receiving events from it.

    It exposes two more events:
    - openai_server_event_received: expose the raw server events from the OpenAI Realtime API
    - openai_client_event_queued: expose the raw client events sent to the OpenAI Realtime API
    """

    def __init__(self, realtime_model: RealtimeModel) -> None:
        super().__init__(realtime_model)
        self._realtime_model: RealtimeModel = realtime_model
        self._tools = llm.ToolContext.empty()
        self._msg_ch = utils.aio.Chan[Union[RealtimeClientEvent, dict[str, Any]]]()
        self._input_resampler: rtc.AudioResampler | None = None

        self._instructions: str | None = None
        self._main_atask = asyncio.create_task(self._main_task(), name="RealtimeSession._main_task")
        self.send_event(self._create_session_update_event())

        self._response_created_futures: dict[str, asyncio.Future[llm.GenerationCreatedEvent]] = {}
        self._item_delete_future: dict[str, asyncio.Future] = {}
        self._item_create_future: dict[str, asyncio.Future] = {}

        self._current_generation: _ResponseGeneration | None = None
        self._remote_chat_ctx = llm.remote_chat_context.RemoteChatContext()

        self._update_chat_ctx_lock = asyncio.Lock()
        self._update_fnc_ctx_lock = asyncio.Lock()

        # 100ms chunks
        self._bstream = utils.audio.AudioByteStream(
            SAMPLE_RATE, NUM_CHANNELS, samples_per_channel=SAMPLE_RATE // 10
        )
        self._pushed_duration_s: float = 0  # duration of audio pushed to the OpenAI Realtime API

    def send_event(self, event: RealtimeClientEvent | dict[str, Any]) -> None:
        with contextlib.suppress(utils.aio.channel.ChanClosed):
            self._msg_ch.send_nowait(event)

    @utils.log_exceptions(logger=logger)
    async def _main_task(self) -> None:
        num_retries: int = 0
        max_retries = self._realtime_model._opts.conn_options.max_retry

        async def _reconnect() -> None:
            logger.debug(
                "reconnecting to OpenAI Realtime API",
                extra={"max_session_duration": self._realtime_model._opts.max_session_duration},
            )

            events: list[RealtimeClientEvent | dict[str, Any]] = []

            # options and instructions
            events.append(self._create_session_update_event())

            # tools
            tools = self._tools.flatten()
            if tools:
                events.append(self._create_tools_update_event(tools))

            # chat context
            chat_ctx = self.chat_ctx.copy(
                exclude_function_call=True,
                exclude_instructions=True,
                exclude_empty_message=True,
                exclude_handoff=True,
            )
            old_chat_ctx = self._remote_chat_ctx
            self._remote_chat_ctx = llm.remote_chat_context.RemoteChatContext()
            events.extend(self._create_update_chat_ctx_events(chat_ctx))

            try:
                for ev in events:
                    # certain events could already be in dict format
                    if isinstance(ev, BaseModel):
                        ev = ev.model_dump(
                            by_alias=True, exclude_unset=True, exclude_defaults=False
                        )

                    self.emit("openai_client_event_queued", ev)
                    await ws_conn.send_str(json.dumps(ev))
            except Exception as e:
                self._remote_chat_ctx = old_chat_ctx  # restore the old chat context
                raise APIConnectionError(
                    message=(
                        "Failed to send message to OpenAI Realtime API during session re-connection"
                    ),
                ) from e

            logger.debug("reconnected to OpenAI Realtime API")
            self.emit("session_reconnected", llm.RealtimeSessionReconnectedEvent())

        reconnecting = False
        while not self._msg_ch.closed:
            try:
                ws_conn = await self._create_ws_conn()
                if reconnecting:
                    await _reconnect()
                    num_retries = 0  # reset the retry counter
                await self._run_ws(ws_conn)

            except APIError as e:
                if max_retries == 0 or not e.retryable:
                    self._emit_error(e, recoverable=False)
                    raise
                elif num_retries == max_retries:
                    self._emit_error(e, recoverable=False)
                    raise APIConnectionError(
                        f"OpenAI Realtime API connection failed after {num_retries} attempts",
                    ) from e
                else:
                    self._emit_error(e, recoverable=True)

                    retry_interval = self._realtime_model._opts.conn_options._interval_for_retry(
                        num_retries
                    )
                    logger.warning(
                        f"OpenAI Realtime API connection failed, retrying in {retry_interval}s",
                        exc_info=e,
                        extra={"attempt": num_retries, "max_retries": max_retries},
                    )
                    await asyncio.sleep(retry_interval)
                num_retries += 1

            except Exception as e:
                self._emit_error(e, recoverable=False)
                raise

            reconnecting = True

    async def _create_ws_conn(self) -> aiohttp.ClientWebSocketResponse:
        headers = {"User-Agent": "LiveKit Agents"}
        if self._realtime_model._opts.is_azure:
            if self._realtime_model._opts.entra_token:
                headers["Authorization"] = f"Bearer {self._realtime_model._opts.entra_token}"

            if self._realtime_model._opts.api_key:
                headers["api-key"] = self._realtime_model._opts.api_key
        else:
            headers["Authorization"] = f"Bearer {self._realtime_model._opts.api_key}"

        url = process_base_url(
            self._realtime_model._opts.base_url,
            self._realtime_model._opts.model,
            is_azure=self._realtime_model._opts.is_azure,
            api_version=self._realtime_model._opts.api_version,
            azure_deployment=self._realtime_model._opts.azure_deployment,
        )

        if lk_oai_debug:
            logger.debug(f"connecting to Realtime API: {url}")

        try:
            return await asyncio.wait_for(
                self._realtime_model._ensure_http_session().ws_connect(url=url, headers=headers),
                self._realtime_model._opts.conn_options.timeout,
            )
        except aiohttp.ClientError as e:
            raise APIConnectionError("OpenAI Realtime API client connection error") from e
        except asyncio.TimeoutError as e:
            raise APIConnectionError(
                message="OpenAI Realtime API connection timed out",
            ) from e

    async def _run_ws(self, ws_conn: aiohttp.ClientWebSocketResponse) -> None:
        closing = False

        @utils.log_exceptions(logger=logger)
        async def _send_task() -> None:
            nonlocal closing
            async for msg in self._msg_ch:
                try:
                    if isinstance(msg, BaseModel):
                        msg = msg.model_dump(
                            by_alias=True, exclude_unset=True, exclude_defaults=False
                        )

                    self.emit("openai_client_event_queued", msg)
                    await ws_conn.send_str(json.dumps(msg))

                    if lk_oai_debug:
                        msg_copy = msg.copy()
                        if msg_copy["type"] == "input_audio_buffer.append":
                            msg_copy = {**msg_copy, "audio": "..."}

                        logger.debug(f">>> {msg_copy}")
                except Exception:
                    logger.exception("failed to send event")

            closing = True
            await ws_conn.close()

        @utils.log_exceptions(logger=logger)
        async def _recv_task() -> None:
            while True:
                msg = await ws_conn.receive()
                if msg.type in (
                    aiohttp.WSMsgType.CLOSED,
                    aiohttp.WSMsgType.CLOSE,
                    aiohttp.WSMsgType.CLOSING,
                ):
                    if closing:  # closing is expected, see _send_task
                        return

                    # this will trigger a reconnection
                    raise APIConnectionError(message="OpenAI S2S connection closed unexpectedly")

                if msg.type != aiohttp.WSMsgType.TEXT:
                    continue

                event = json.loads(msg.data)

                # emit the raw json dictionary instead of the BaseModel because different
                # providers can have different event types that are not part of the OpenAI Realtime API  # noqa: E501
                self.emit("openai_server_event_received", event)

                try:
                    if lk_oai_debug:
                        event_copy = event.copy()
                        if event_copy["type"] == "response.output_audio.delta":
                            event_copy = {**event_copy, "delta": "..."}

                        logger.debug(f"<<< {event_copy}")

                    if event["type"] == "input_audio_buffer.speech_started":
                        self._handle_input_audio_buffer_speech_started(
                            InputAudioBufferSpeechStartedEvent.construct(**event)
                        )
                    elif event["type"] == "input_audio_buffer.speech_stopped":
                        self._handle_input_audio_buffer_speech_stopped(
                            InputAudioBufferSpeechStoppedEvent.construct(**event)
                        )
                    elif event["type"] == "response.created":
                        self._handle_response_created(ResponseCreatedEvent.construct(**event))
                    elif event["type"] == "response.output_item.added":
                        self._handle_response_output_item_added(
                            ResponseOutputItemAddedEvent.construct(**event)
                        )
                    elif event["type"] == "response.content_part.added":
                        self._handle_response_content_part_added(
                            ResponseContentPartAddedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.added":
                        self._handle_conversion_item_added(ConversationItemAdded.construct(**event))
                    elif event["type"] == "conversation.item.deleted":
                        self._handle_conversion_item_deleted(
                            ConversationItemDeletedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.input_audio_transcription.delta":
                        # currently incoming transcripts are transcribed only after the user stops speaking
                        # it's not very useful to emit these as the transcribe process takes place within ~100ms
                        # when they handle streaming transcriptions, we'll handle it then.
                        pass
                    elif event["type"] == "conversation.item.input_audio_transcription.completed":
                        self._handle_conversion_item_input_audio_transcription_completed(
                            ConversationItemInputAudioTranscriptionCompletedEvent.construct(**event)
                        )
                    elif event["type"] == "conversation.item.input_audio_transcription.failed":
                        self._handle_conversion_item_input_audio_transcription_failed(
                            ConversationItemInputAudioTranscriptionFailedEvent.construct(**event)
                        )
                    elif event["type"] == "response.output_text.delta":
                        self._handle_response_text_delta(ResponseTextDeltaEvent.construct(**event))
                    elif event["type"] == "response.output_text.done":
                        self._handle_response_text_done(ResponseTextDoneEvent.construct(**event))
                    elif event["type"] == "response.output_audio_transcript.delta":
                        self._handle_response_audio_transcript_delta(event)
                    elif event["type"] == "response.output_audio.delta":
                        self._handle_response_audio_delta(
                            ResponseAudioDeltaEvent.construct(**event)
                        )
                    elif event["type"] == "response.output_audio_transcript.done":
                        self._handle_response_audio_transcript_done(
                            ResponseAudioTranscriptDoneEvent.construct(**event)
                        )
                    elif event["type"] == "response.output_audio.done":
                        self._handle_response_audio_done(ResponseAudioDoneEvent.construct(**event))
                    elif event["type"] == "response.output_item.done":
                        self._handle_response_output_item_done(
                            ResponseOutputItemDoneEvent.construct(**event)
                        )
                    elif event["type"] == "response.done":
                        self._handle_response_done(ResponseDoneEvent.construct(**event))
                    elif event["type"] == "error":
                        self._handle_error(RealtimeErrorEvent.construct(**event))
                    elif lk_oai_debug:
                        logger.debug(f"unhandled event: {event['type']}", extra={"event": event})
                except Exception:
                    if event["type"] == "response.output_audio.delta":
                        event["delta"] = event["delta"][:10] + "..."
                    logger.exception("failed to handle event", extra={"event": event})

        tasks = [
            asyncio.create_task(_recv_task(), name="_recv_task"),
            asyncio.create_task(_send_task(), name="_send_task"),
        ]
        wait_reconnect_task: asyncio.Task | None = None
        if self._realtime_model._opts.max_session_duration is not None:
            wait_reconnect_task = asyncio.create_task(
                asyncio.sleep(self._realtime_model._opts.max_session_duration),
                name="_timeout_task",
            )
            tasks.append(wait_reconnect_task)
        try:
            done, _ = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)

            # propagate exceptions from completed tasks
            for task in done:
                if task != wait_reconnect_task:
                    task.result()

            if wait_reconnect_task and wait_reconnect_task in done and self._current_generation:
                # wait for the current generation to complete before reconnecting
                await self._current_generation._done_fut
                closing = True

        finally:
            await utils.aio.cancel_and_wait(*tasks)
            await ws_conn.close()

    def _create_session_update_event(self) -> SessionUpdateEvent:
        audio_format = realtime.realtime_audio_formats.AudioPCM(rate=SAMPLE_RATE, type="audio/pcm")
        # they do not support both text and audio modalities, it'll respond in audio + transcript
        modality = "audio" if "audio" in self._realtime_model._opts.modalities else "text"

        session = RealtimeSessionCreateRequest(
            type="realtime",
            model=self._realtime_model._opts.model,
            output_modalities=[modality],
            audio=RealtimeAudioConfig(
                input=RealtimeAudioConfigInput(
                    format=audio_format,
                    noise_reduction=self._realtime_model._opts.input_audio_noise_reduction,
                    transcription=self._realtime_model._opts.input_audio_transcription,
                    turn_detection=self._realtime_model._opts.turn_detection,
                ),
                output=RealtimeAudioConfigOutput(
                    format=audio_format,
                    speed=self._realtime_model._opts.speed,
                    voice=self._realtime_model._opts.voice,
                ),
            ),
            max_output_tokens=self._realtime_model._opts.max_response_output_tokens,
            tool_choice=to_oai_tool_choice(self._realtime_model._opts.tool_choice),
            tracing=self._realtime_model._opts.tracing,
        )
        if self._instructions is not None:
            session.instructions = self._instructions

        # initial session update
        return SessionUpdateEvent(
            type="session.update",
            # Using model_construct since OpenAI restricts voices to those defined in the BaseModel.  # noqa: E501
            # Other providers support different voices, so we need to accommodate that.
            session=session,
            event_id=utils.shortuuid("session_update_"),
        )

    @property
    def chat_ctx(self) -> llm.ChatContext:
        return self._remote_chat_ctx.to_chat_ctx()

    @property
    def tools(self) -> llm.ToolContext:
        return self._tools.copy()

    def update_options(
        self,
        *,
        tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
        voice: NotGivenOr[str] = NOT_GIVEN,
        turn_detection: NotGivenOr[RealtimeAudioInputTurnDetection | None] = NOT_GIVEN,
        max_response_output_tokens: NotGivenOr[int | Literal["inf"] | None] = NOT_GIVEN,
        input_audio_transcription: NotGivenOr[AudioTranscription | None] = NOT_GIVEN,
        input_audio_noise_reduction: NotGivenOr[
            NoiseReductionType | NoiseReduction | InputAudioNoiseReduction | None
        ] = NOT_GIVEN,
        speed: NotGivenOr[float] = NOT_GIVEN,
        tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
    ) -> None:
        session = RealtimeSessionCreateRequest(
            type="realtime",
        )
        has_changes = False

        if is_given(tool_choice):
            tool_choice = cast(Optional[llm.ToolChoice], tool_choice)
            self._realtime_model._opts.tool_choice = tool_choice
            session.tool_choice = to_oai_tool_choice(tool_choice)
            has_changes = True

        if is_given(max_response_output_tokens):
            self._realtime_model._opts.max_response_output_tokens = max_response_output_tokens  # type: ignore
            session.max_output_tokens = max_response_output_tokens  # type: ignore
            has_changes = True

        if is_given(tracing):
            self._realtime_model._opts.tracing = cast(Union[Tracing, None], tracing)
            session.tracing = cast(Union[Tracing, None], tracing)  # type: ignore
            has_changes = True

        has_audio_config = False
        audio_output = RealtimeAudioConfigOutput()
        audio_input = RealtimeAudioConfigInput()
        audio_config = RealtimeAudioConfig(
            output=audio_output,
            input=audio_input,
        )

        if is_given(voice):
            self._realtime_model._opts.voice = voice
            audio_output.voice = voice
            has_audio_config = True

        if is_given(turn_detection):
            self._realtime_model._opts.turn_detection = turn_detection  # type: ignore
            audio_input.turn_detection = turn_detection  # type: ignore
            has_audio_config = True

        if is_given(input_audio_transcription):
            self._realtime_model._opts.input_audio_transcription = input_audio_transcription
            audio_input.transcription = input_audio_transcription
            has_audio_config = True

        if is_given(input_audio_noise_reduction):
            input_audio_noise_reduction = to_noise_reduction(input_audio_noise_reduction)  # type: ignore
            self._realtime_model._opts.input_audio_noise_reduction = input_audio_noise_reduction
            audio_input.noise_reduction = input_audio_noise_reduction
            has_audio_config = True

        if is_given(speed):
            self._realtime_model._opts.speed = speed
            audio_output.speed = speed
            has_audio_config = True

        if has_audio_config:
            session.audio = audio_config
            has_changes = True

        if has_changes:
            self.send_event(
                SessionUpdateEvent(
                    type="session.update",
                    session=session,
                    event_id=utils.shortuuid("options_update_"),
                )
            )

    async def update_chat_ctx(self, chat_ctx: llm.ChatContext) -> None:
        async with self._update_chat_ctx_lock:
            chat_ctx = chat_ctx.copy(exclude_handoff=True, exclude_instructions=True)
            events = self._create_update_chat_ctx_events(chat_ctx)
            futs: list[asyncio.Future[None]] = []

            for ev in events:
                futs.append(f := asyncio.Future[None]())
                if isinstance(ev, ConversationItemDeleteEvent):
                    self._item_delete_future[ev.item_id] = f
                elif isinstance(ev, ConversationItemCreateEvent):
                    assert ev.item.id is not None
                    self._item_create_future[ev.item.id] = f
                self.send_event(ev)

            if not futs:
                return
            try:
                await asyncio.wait_for(asyncio.gather(*futs, return_exceptions=True), timeout=5.0)
            except asyncio.TimeoutError:
                raise llm.RealtimeError("update_chat_ctx timed out.") from None

    def _create_update_chat_ctx_events(
        self, chat_ctx: llm.ChatContext
    ) -> list[ConversationItemCreateEvent | ConversationItemDeleteEvent]:
        events: list[ConversationItemCreateEvent | ConversationItemDeleteEvent] = []
        remote_ctx = self._remote_chat_ctx.to_chat_ctx()
        diff_ops = llm.utils.compute_chat_ctx_diff(remote_ctx, chat_ctx)

        def _delete_item(msg_id: str) -> None:
            events.append(
                ConversationItemDeleteEvent(
                    type="conversation.item.delete",
                    item_id=msg_id,
                    event_id=utils.shortuuid("chat_ctx_delete_"),
                )
            )

        def _create_item(previous_msg_id: str | None, msg_id: str) -> None:
            chat_item = chat_ctx.get_by_id(msg_id)
            assert chat_item is not None
            events.append(
                ConversationItemCreateEvent(
                    type="conversation.item.create",
                    item=livekit_item_to_openai_item(chat_item),
                    previous_item_id=("root" if previous_msg_id is None else previous_msg_id),
                    event_id=utils.shortuuid("chat_ctx_create_"),
                )
            )

        def _is_content_empty(msg_id: str) -> bool:
            remote_item = remote_ctx.get_by_id(msg_id)
            if remote_item and remote_item.type == "message" and not remote_item.content:
                return True
            return False

        for msg_id in diff_ops.to_remove:
            # we don't have content synced down for some types of content (audio/images)
            # these won't be present in the Agent's view of the context
            # so in those cases, we do not want to remove them from the server context
            if _is_content_empty(msg_id):
                continue
            _delete_item(msg_id)

        for previous_msg_id, msg_id in diff_ops.to_create:
            _create_item(previous_msg_id, msg_id)

        # update the items with the same id but different content
        for previous_msg_id, msg_id in diff_ops.to_update:
            # likewise, empty content almost always means the content is not synced down
            # we don't want to recreate these items there
            if _is_content_empty(msg_id):
                continue
            _delete_item(msg_id)
            _create_item(previous_msg_id, msg_id)

        return events

    async def update_tools(self, tools: list[llm.Tool]) -> None:
        async with self._update_fnc_ctx_lock:
            ev = self._create_tools_update_event(tools)
            self.send_event(ev)

            retained_tool_names: set[str] = set()
            for t in ev["session"]["tools"]:
                if name := t.get("name"):
                    retained_tool_names.add(name)
                # TODO(dz): handle MCP tools
            retained_tools = [
                tool
                for tool in tools
                if (
                    isinstance(tool, (llm.FunctionTool, llm.RawFunctionTool))
                    and tool.info.name in retained_tool_names
                )
                or isinstance(tool, llm.ProviderTool)
            ]
            self._tools = llm.ToolContext(retained_tools)

    # this function can be overrided
    def _create_tools_update_event(self, tools: list[llm.Tool]) -> dict[str, Any]:
        oai_tools: list[RealtimeFunctionTool] = []

        for tool in tools:
            if isinstance(tool, llm.FunctionTool):
                tool_desc = llm.utils.build_legacy_openai_schema(tool, internally_tagged=True)
            elif isinstance(tool, llm.RawFunctionTool):
                tool_desc = tool.info.raw_schema
                tool_desc.pop("meta", None)  # meta is not supported by OpenAI Realtime API
                tool_desc["type"] = "function"  # internally tagged
            elif isinstance(tool, llm.ProviderTool):
                continue  # currently only xAI supports ProviderTools
            else:
                logger.error(
                    "OpenAI Realtime API doesn't support this tool type", extra={"tool": tool}
                )
                continue

            try:
                session_tool = RealtimeFunctionTool.model_validate(tool_desc)
                oai_tools.append(session_tool)
            except ValidationError:
                logger.error(
                    "OpenAI Realtime API doesn't support this tool",
                    extra={"tool": tool_desc},
                )
                continue

        event = SessionUpdateEvent(
            type="session.update",
            session=RealtimeSessionCreateRequest.model_construct(
                type="realtime",
                model=self._realtime_model._opts.model,
                tools=oai_tools,  # type: ignore
            ),
            event_id=utils.shortuuid("tools_update_"),
        )

        event_dict = event.model_dump(by_alias=True, exclude_unset=True, exclude_defaults=False)
        return event_dict

    async def update_instructions(self, instructions: str) -> None:
        event_id = utils.shortuuid("instructions_update_")
        self.send_event(
            SessionUpdateEvent(
                type="session.update",
                session=RealtimeSessionCreateRequest.model_construct(
                    type="realtime",
                    instructions=instructions,
                ),
                event_id=event_id,
            )
        )
        self._instructions = instructions

    def push_audio(self, frame: rtc.AudioFrame) -> None:
        for f in self._resample_audio(frame):
            data = f.data.tobytes()
            for nf in self._bstream.write(data):
                self.send_event(
                    InputAudioBufferAppendEvent(
                        type="input_audio_buffer.append",
                        audio=base64.b64encode(nf.data).decode("utf-8"),
                    )
                )
                self._pushed_duration_s += nf.duration

    def push_video(self, frame: rtc.VideoFrame) -> None:
        message = llm.ChatMessage(
            role="user",
            content=[llm.ImageContent(image=frame)],
        )
        oai_item = livekit_item_to_openai_item(message)
        self.send_event(
            ConversationItemCreateEvent(
                type="conversation.item.create",
                item=oai_item,
                event_id=utils.shortuuid("video_"),
            )
        )

    def commit_audio(self) -> None:
        if self._pushed_duration_s > 0.1:  # OpenAI requires at least 100ms of audio
            self.send_event(InputAudioBufferCommitEvent(type="input_audio_buffer.commit"))
            self._pushed_duration_s = 0

    def clear_audio(self) -> None:
        self.send_event(InputAudioBufferClearEvent(type="input_audio_buffer.clear"))
        self._pushed_duration_s = 0

    def generate_reply(
        self, *, instructions: NotGivenOr[str] = NOT_GIVEN
    ) -> asyncio.Future[llm.GenerationCreatedEvent]:
        event_id = utils.shortuuid("response_create_")
        fut = asyncio.Future[llm.GenerationCreatedEvent]()
        self._response_created_futures[event_id] = fut
        self.send_event(
            ResponseCreateEvent(
                type="response.create",
                event_id=event_id,
                response=RealtimeResponseCreateParams(
                    instructions=instructions or None,
                    metadata={"client_event_id": event_id},
                ),
            )
        )

        def _on_timeout() -> None:
            if fut and not fut.done():
                fut.set_exception(llm.RealtimeError("generate_reply timed out."))

        handle = asyncio.get_event_loop().call_later(5.0, _on_timeout)
        fut.add_done_callback(lambda _: handle.cancel())
        return fut

    def interrupt(self) -> None:
        self.send_event(ResponseCancelEvent(type="response.cancel"))

    def truncate(
        self,
        *,
        message_id: str,
        modalities: list[Literal["text", "audio"]],
        audio_end_ms: int,
        audio_transcript: NotGivenOr[str] = NOT_GIVEN,
    ) -> None:
        if "audio" in modalities:
            self.send_event(
                ConversationItemTruncateEvent(
                    type="conversation.item.truncate",
                    content_index=0,
                    item_id=message_id,
                    audio_end_ms=audio_end_ms,
                )
            )
        elif utils.is_given(audio_transcript):
            # sync the forwarded text to the remote chat ctx
            chat_ctx = self.chat_ctx.copy(
                exclude_handoff=True,
            )
            if (idx := chat_ctx.index_by_id(message_id)) is not None:
                new_item = copy.copy(chat_ctx.items[idx])
                assert new_item.type == "message"

                new_item.content = [audio_transcript]
                chat_ctx.items[idx] = new_item
                events = self._create_update_chat_ctx_events(chat_ctx)
                for ev in events:
                    self.send_event(ev)

    async def aclose(self) -> None:
        self._msg_ch.close()
        await self._main_atask

    def _resample_audio(self, frame: rtc.AudioFrame) -> Iterator[rtc.AudioFrame]:
        if self._input_resampler:
            if frame.sample_rate != self._input_resampler._input_rate:
                # input audio changed to a different sample rate
                self._input_resampler = None

        if self._input_resampler is None and (
            frame.sample_rate != SAMPLE_RATE or frame.num_channels != NUM_CHANNELS
        ):
            self._input_resampler = rtc.AudioResampler(
                input_rate=frame.sample_rate,
                output_rate=SAMPLE_RATE,
                num_channels=NUM_CHANNELS,
            )

        if self._input_resampler:
            # TODO(long): flush the resampler when the input source is changed
            yield from self._input_resampler.push(frame)
        else:
            yield frame

    def _handle_input_audio_buffer_speech_started(
        self, _: InputAudioBufferSpeechStartedEvent
    ) -> None:
        self.emit("input_speech_started", llm.InputSpeechStartedEvent())

    def _handle_input_audio_buffer_speech_stopped(
        self, _: InputAudioBufferSpeechStoppedEvent
    ) -> None:
        user_transcription_enabled = (
            self._realtime_model._opts.input_audio_transcription is not None
        )
        self.emit(
            "input_speech_stopped",
            llm.InputSpeechStoppedEvent(user_transcription_enabled=user_transcription_enabled),
        )

    def _handle_response_created(self, event: ResponseCreatedEvent) -> None:
        assert event.response.id is not None, "response.id is None"

        self._current_generation = _ResponseGeneration(
            message_ch=utils.aio.Chan(),
            function_ch=utils.aio.Chan(),
            messages={},
            _created_timestamp=time.time(),
            _done_fut=asyncio.Future(),
        )

        generation_ev = llm.GenerationCreatedEvent(
            message_stream=self._current_generation.message_ch,
            function_stream=self._current_generation.function_ch,
            user_initiated=False,
            response_id=event.response.id,
        )

        if (
            isinstance(event.response.metadata, dict)
            and (client_event_id := event.response.metadata.get("client_event_id"))
            and (fut := self._response_created_futures.pop(client_event_id, None))
        ):
            if not fut.done():
                generation_ev.user_initiated = True
                fut.set_result(generation_ev)
            else:
                logger.warning("response of generate_reply received after it's timed out.")

        self.emit("generation_created", generation_ev)

    def _handle_response_output_item_added(self, event: ResponseOutputItemAddedEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        assert (item_id := event.item.id) is not None, "item.id is None"
        assert (item_type := event.item.type) is not None, "item.type is None"

        if item_type == "message":
            item_generation = _MessageGeneration(
                message_id=item_id,
                text_ch=utils.aio.Chan(),
                audio_ch=utils.aio.Chan(),
                modalities=asyncio.Future(),
            )
            if not self._realtime_model.capabilities.audio_output:
                item_generation.audio_ch.close()
                item_generation.modalities.set_result(["text"])

            self._current_generation.message_ch.send_nowait(
                llm.MessageGeneration(
                    message_id=item_id,
                    text_stream=item_generation.text_ch,
                    audio_stream=item_generation.audio_ch,
                    modalities=item_generation.modalities,
                )
            )
            self._current_generation.messages[item_id] = item_generation

    def _handle_response_content_part_added(self, event: ResponseContentPartAddedEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        assert (item_id := event.item_id) is not None, "item_id is None"
        assert (item_type := event.part.type) is not None, "part.type is None"

        if item_type == "text" and self._realtime_model.capabilities.audio_output:
            logger.warning("Text response received from OpenAI Realtime API in audio modality.")

        with contextlib.suppress(asyncio.InvalidStateError):
            self._current_generation.messages[item_id].modalities.set_result(
                ["text"] if item_type == "text" else ["audio", "text"]
            )

    def _handle_conversion_item_added(self, event: ConversationItemAdded) -> None:
        assert event.item.id is not None, "item.id is None"

        try:
            self._remote_chat_ctx.insert(
                event.previous_item_id, openai_item_to_livekit_item(event.item)
            )
        except ValueError as e:
            logger.warning(
                f"failed to insert item `{event.item.id}`: {str(e)}",
            )

        if fut := self._item_create_future.pop(event.item.id, None):
            fut.set_result(None)

    def _handle_conversion_item_deleted(self, event: ConversationItemDeletedEvent) -> None:
        assert event.item_id is not None, "item_id is None"

        try:
            self._remote_chat_ctx.delete(event.item_id)
        except ValueError as e:
            logger.warning(
                f"failed to delete item `{event.item_id}`: {str(e)}",
            )

        if fut := self._item_delete_future.pop(event.item_id, None):
            fut.set_result(None)

    def _handle_conversion_item_input_audio_transcription_completed(
        self, event: ConversationItemInputAudioTranscriptionCompletedEvent
    ) -> None:
        if remote_item := self._remote_chat_ctx.get(event.item_id):
            assert isinstance(remote_item.item, llm.ChatMessage)
            remote_item.item.content.append(event.transcript)

        self.emit(
            "input_audio_transcription_completed",
            llm.InputTranscriptionCompleted(
                item_id=event.item_id,
                transcript=event.transcript,
                is_final=True,
            ),
        )

    def _handle_conversion_item_input_audio_transcription_failed(
        self, event: ConversationItemInputAudioTranscriptionFailedEvent
    ) -> None:
        logger.error(
            "OpenAI Realtime API failed to transcribe input audio",
            extra={"error": event.error},
        )

    def _handle_response_text_delta(self, event: ResponseTextDeltaEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        item_generation = self._current_generation.messages[event.item_id]
        if (
            item_generation.audio_ch.closed
            and self._current_generation._first_token_timestamp is None
        ):
            # only if audio is not available
            self._current_generation._first_token_timestamp = time.time()

        item_generation.text_ch.send_nowait(event.delta)
        item_generation.audio_transcript += event.delta

    def _handle_response_text_done(self, event: ResponseTextDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"

    def _handle_response_audio_transcript_delta(self, event: dict[str, Any]) -> None:
        assert self._current_generation is not None, "current_generation is None"

        item_id = event["item_id"]
        delta = event["delta"]

        if (start_time := event.get("start_time")) is not None:
            delta = io.TimedString(delta, start_time=start_time)

        item_generation = self._current_generation.messages[item_id]
        item_generation.text_ch.send_nowait(delta)
        item_generation.audio_transcript += delta

    def _handle_response_audio_delta(self, event: ResponseAudioDeltaEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        item_generation = self._current_generation.messages[event.item_id]
        if self._current_generation._first_token_timestamp is None:
            self._current_generation._first_token_timestamp = time.time()

        if not item_generation.modalities.done():
            item_generation.modalities.set_result(["audio", "text"])

        data = base64.b64decode(event.delta)
        item_generation.audio_ch.send_nowait(
            rtc.AudioFrame(
                data=data,
                sample_rate=SAMPLE_RATE,
                num_channels=NUM_CHANNELS,
                samples_per_channel=len(data) // 2,
            )
        )

    def _handle_response_audio_transcript_done(
        self, event: ResponseAudioTranscriptDoneEvent
    ) -> None:
        assert self._current_generation is not None, "current_generation is None"
        # also need to sync existing item's context
        remote_item = self._remote_chat_ctx.get(event.item_id)
        if remote_item and event.transcript and isinstance(remote_item.item, llm.ChatMessage):
            remote_item.item.content.append(event.transcript)

    def _handle_response_audio_done(self, _: ResponseAudioDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"

    def _handle_response_output_item_done(self, event: ResponseOutputItemDoneEvent) -> None:
        assert self._current_generation is not None, "current_generation is None"
        assert (item_id := event.item.id) is not None, "item.id is None"
        assert (item_type := event.item.type) is not None, "item.type is None"

        if item_type == "function_call" and isinstance(
            event.item, RealtimeConversationItemFunctionCall
        ):
            item = event.item
            assert item.call_id is not None, "call_id is None"
            assert item.name is not None, "name is None"
            assert item.arguments is not None, "arguments is None"

            self._current_generation.function_ch.send_nowait(
                llm.FunctionCall(
                    call_id=item.call_id,
                    name=item.name,
                    arguments=item.arguments,
                )
            )
        elif item_type == "message":
            item_generation = self._current_generation.messages[item_id]
            item_generation.text_ch.close()
            item_generation.audio_ch.close()
            if not item_generation.modalities.done():
                # in case message modalities is not set, this shouldn't happen
                item_generation.modalities.set_result(self._realtime_model._opts.modalities)

    def _handle_response_done(self, event: ResponseDoneEvent) -> None:
        if self._current_generation is None:
            return  # OpenAI has a race condition where we could receive response.done without any previous response.created (This happens generally during interruption)  # noqa: E501

        assert self._current_generation is not None, "current_generation is None"

        created_timestamp = self._current_generation._created_timestamp
        first_token_timestamp = self._current_generation._first_token_timestamp

        for generation in self._current_generation.messages.values():
            # close all messages that haven't been closed yet
            if not generation.text_ch.closed:
                generation.text_ch.close()
            if not generation.audio_ch.closed:
                generation.audio_ch.close()
            if not generation.modalities.done():
                generation.modalities.set_result(self._realtime_model._opts.modalities)

        self._current_generation.function_ch.close()
        self._current_generation.message_ch.close()
        for item_id, item_generation in self._current_generation.messages.items():
            if (remote_item := self._remote_chat_ctx.get(item_id)) and isinstance(
                remote_item.item, llm.ChatMessage
            ):
                remote_item.item.content.append(item_generation.audio_transcript)

        with contextlib.suppress(asyncio.InvalidStateError):
            self._current_generation._done_fut.set_result(None)
        self._current_generation = None

        # calculate metrics
        usage = (
            event.response.usage.model_dump(exclude_defaults=True) if event.response.usage else {}
        )
        ttft = first_token_timestamp - created_timestamp if first_token_timestamp else -1
        duration = time.time() - created_timestamp
        metrics = RealtimeModelMetrics(
            timestamp=created_timestamp,
            request_id=event.response.id or "",
            ttft=ttft,
            duration=duration,
            cancelled=event.response.status == "cancelled",
            label=self._realtime_model.label,
            input_tokens=usage.get("input_tokens", 0),
            output_tokens=usage.get("output_tokens", 0),
            total_tokens=usage.get("total_tokens", 0),
            tokens_per_second=usage.get("output_tokens", 0) / duration if duration > 0 else 0,
            input_token_details=RealtimeModelMetrics.InputTokenDetails(
                audio_tokens=usage.get("input_token_details", {}).get("audio_tokens", 0),
                cached_tokens=usage.get("input_token_details", {}).get("cached_tokens", 0),
                text_tokens=usage.get("input_token_details", {}).get("text_tokens", 0),
                cached_tokens_details=RealtimeModelMetrics.CachedTokenDetails(
                    text_tokens=usage.get("input_token_details", {})
                    .get("cached_tokens_details", {})
                    .get("text_tokens", 0),
                    audio_tokens=usage.get("input_token_details", {})
                    .get("cached_tokens_details", {})
                    .get("audio_tokens", 0),
                    image_tokens=usage.get("input_token_details", {})
                    .get("cached_tokens_details", {})
                    .get("image_tokens", 0),
                ),
                image_tokens=usage.get("input_token_details", {}).get("image_tokens", 0),
            ),
            output_token_details=RealtimeModelMetrics.OutputTokenDetails(
                text_tokens=usage.get("output_token_details", {}).get("text_tokens", 0),
                audio_tokens=usage.get("output_token_details", {}).get("audio_tokens", 0),
                image_tokens=usage.get("output_token_details", {}).get("image_tokens", 0),
            ),
            metadata=Metadata(
                model_name=self._realtime_model.model, model_provider=self._realtime_model.provider
            ),
        )
        self.emit("metrics_collected", metrics)
        self._handle_response_done_but_not_complete(event)

    def _handle_response_done_but_not_complete(self, event: ResponseDoneEvent) -> None:
        """Handle response done but not complete, i.e. cancelled, incomplete or failed.

        For example this method will emit an error if we receive a "failed" status, e.g.
        with type "invalid_request_error" due to code "inference_rate_limit_exceeded".

        In other failures it will emit a debug level log.
        """
        if event.response.status == "completed":
            return

        if event.response.status == "failed":
            if event.response.status_details and hasattr(event.response.status_details, "error"):
                error_type = getattr(event.response.status_details.error, "type", "unknown")
                error_body = event.response.status_details.error
                message = f"OpenAI Realtime API response failed with error type: {error_type}"
            else:
                error_body = None
                message = "OpenAI Realtime API response failed with unknown error"
            self._emit_error(
                APIError(
                    message=message,
                    body=error_body,
                    retryable=True,
                ),
                # all possible faulures undocumented by openai,
                # so we assume optimistically all retryable/recoverable
                recoverable=True,
            )
        elif event.response.status in {"cancelled", "incomplete"}:
            logger.debug(
                "OpenAI Realtime API response done but not complete with status: %s",
                event.response.status,
                extra={
                    "event_id": event.response.id,
                    "event_response_status": event.response.status,
                },
            )
        else:
            logger.debug("Unknown response status: %s", event.response.status)

    def _handle_error(self, event: RealtimeErrorEvent) -> None:
        if event.error.message.startswith("Cancellation failed"):
            return

        logger.error(
            "OpenAI Realtime API returned an error",
            extra={"error": event.error},
        )
        self._emit_error(
            APIError(
                message="OpenAI Realtime API returned an error",
                body=event.error,
                retryable=True,
            ),
            recoverable=True,
        )

        # TODO: set exception for the response future if it exists

    def _emit_error(self, error: Exception, recoverable: bool) -> None:
        self.emit(
            "error",
            llm.RealtimeModelError(
                timestamp=time.time(),
                label=self._realtime_model._label,
                error=error,
                recoverable=recoverable,
            ),
        )

A session for the OpenAI Realtime API.

This class is used to interact with the OpenAI Realtime API. It is responsible for sending events to the OpenAI Realtime API and receiving events from it.

It exposes two more events: - openai_server_event_received: expose the raw server events from the OpenAI Realtime API - openai_client_event_queued: expose the raw client events sent to the OpenAI Realtime API

Ancestors

  • livekit.agents.llm.realtime.RealtimeSession
  • abc.ABC
  • EventEmitter
  • typing.Generic

Subclasses

Instance variables

prop chat_ctx : llm.ChatContext
Expand source code
@property
def chat_ctx(self) -> llm.ChatContext:
    return self._remote_chat_ctx.to_chat_ctx()
prop tools : llm.ToolContext
Expand source code
@property
def tools(self) -> llm.ToolContext:
    return self._tools.copy()

Methods

async def aclose(self) ‑> None
Expand source code
async def aclose(self) -> None:
    self._msg_ch.close()
    await self._main_atask
def clear_audio(self) ‑> None
Expand source code
def clear_audio(self) -> None:
    self.send_event(InputAudioBufferClearEvent(type="input_audio_buffer.clear"))
    self._pushed_duration_s = 0
def commit_audio(self) ‑> None
Expand source code
def commit_audio(self) -> None:
    if self._pushed_duration_s > 0.1:  # OpenAI requires at least 100ms of audio
        self.send_event(InputAudioBufferCommitEvent(type="input_audio_buffer.commit"))
        self._pushed_duration_s = 0
def generate_reply(self, *, instructions: NotGivenOr[str] = NOT_GIVEN) ‑> _asyncio.Future[livekit.agents.llm.realtime.GenerationCreatedEvent]
Expand source code
def generate_reply(
    self, *, instructions: NotGivenOr[str] = NOT_GIVEN
) -> asyncio.Future[llm.GenerationCreatedEvent]:
    event_id = utils.shortuuid("response_create_")
    fut = asyncio.Future[llm.GenerationCreatedEvent]()
    self._response_created_futures[event_id] = fut
    self.send_event(
        ResponseCreateEvent(
            type="response.create",
            event_id=event_id,
            response=RealtimeResponseCreateParams(
                instructions=instructions or None,
                metadata={"client_event_id": event_id},
            ),
        )
    )

    def _on_timeout() -> None:
        if fut and not fut.done():
            fut.set_exception(llm.RealtimeError("generate_reply timed out."))

    handle = asyncio.get_event_loop().call_later(5.0, _on_timeout)
    fut.add_done_callback(lambda _: handle.cancel())
    return fut
def interrupt(self) ‑> None
Expand source code
def interrupt(self) -> None:
    self.send_event(ResponseCancelEvent(type="response.cancel"))
def push_audio(self, frame: rtc.AudioFrame) ‑> None
Expand source code
def push_audio(self, frame: rtc.AudioFrame) -> None:
    for f in self._resample_audio(frame):
        data = f.data.tobytes()
        for nf in self._bstream.write(data):
            self.send_event(
                InputAudioBufferAppendEvent(
                    type="input_audio_buffer.append",
                    audio=base64.b64encode(nf.data).decode("utf-8"),
                )
            )
            self._pushed_duration_s += nf.duration
def push_video(self, frame: rtc.VideoFrame) ‑> None
Expand source code
def push_video(self, frame: rtc.VideoFrame) -> None:
    message = llm.ChatMessage(
        role="user",
        content=[llm.ImageContent(image=frame)],
    )
    oai_item = livekit_item_to_openai_item(message)
    self.send_event(
        ConversationItemCreateEvent(
            type="conversation.item.create",
            item=oai_item,
            event_id=utils.shortuuid("video_"),
        )
    )
def send_event(self, event: RealtimeClientEvent | dict[str, Any]) ‑> None
Expand source code
def send_event(self, event: RealtimeClientEvent | dict[str, Any]) -> None:
    with contextlib.suppress(utils.aio.channel.ChanClosed):
        self._msg_ch.send_nowait(event)
def truncate(self,
*,
message_id: str,
modalities: "list[Literal['text', 'audio']]",
audio_end_ms: int,
audio_transcript: NotGivenOr[str] = NOT_GIVEN) ‑> None
Expand source code
def truncate(
    self,
    *,
    message_id: str,
    modalities: list[Literal["text", "audio"]],
    audio_end_ms: int,
    audio_transcript: NotGivenOr[str] = NOT_GIVEN,
) -> None:
    if "audio" in modalities:
        self.send_event(
            ConversationItemTruncateEvent(
                type="conversation.item.truncate",
                content_index=0,
                item_id=message_id,
                audio_end_ms=audio_end_ms,
            )
        )
    elif utils.is_given(audio_transcript):
        # sync the forwarded text to the remote chat ctx
        chat_ctx = self.chat_ctx.copy(
            exclude_handoff=True,
        )
        if (idx := chat_ctx.index_by_id(message_id)) is not None:
            new_item = copy.copy(chat_ctx.items[idx])
            assert new_item.type == "message"

            new_item.content = [audio_transcript]
            chat_ctx.items[idx] = new_item
            events = self._create_update_chat_ctx_events(chat_ctx)
            for ev in events:
                self.send_event(ev)
async def update_chat_ctx(self, chat_ctx: llm.ChatContext) ‑> None
Expand source code
async def update_chat_ctx(self, chat_ctx: llm.ChatContext) -> None:
    async with self._update_chat_ctx_lock:
        chat_ctx = chat_ctx.copy(exclude_handoff=True, exclude_instructions=True)
        events = self._create_update_chat_ctx_events(chat_ctx)
        futs: list[asyncio.Future[None]] = []

        for ev in events:
            futs.append(f := asyncio.Future[None]())
            if isinstance(ev, ConversationItemDeleteEvent):
                self._item_delete_future[ev.item_id] = f
            elif isinstance(ev, ConversationItemCreateEvent):
                assert ev.item.id is not None
                self._item_create_future[ev.item.id] = f
            self.send_event(ev)

        if not futs:
            return
        try:
            await asyncio.wait_for(asyncio.gather(*futs, return_exceptions=True), timeout=5.0)
        except asyncio.TimeoutError:
            raise llm.RealtimeError("update_chat_ctx timed out.") from None
async def update_instructions(self, instructions: str) ‑> None
Expand source code
async def update_instructions(self, instructions: str) -> None:
    event_id = utils.shortuuid("instructions_update_")
    self.send_event(
        SessionUpdateEvent(
            type="session.update",
            session=RealtimeSessionCreateRequest.model_construct(
                type="realtime",
                instructions=instructions,
            ),
            event_id=event_id,
        )
    )
    self._instructions = instructions
def update_options(self,
*,
tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
voice: NotGivenOr[str] = NOT_GIVEN,
turn_detection: NotGivenOr[RealtimeAudioInputTurnDetection | None] = NOT_GIVEN,
max_response_output_tokens: "NotGivenOr[int | Literal['inf'] | None]" = NOT_GIVEN,
input_audio_transcription: NotGivenOr[AudioTranscription | None] = NOT_GIVEN,
input_audio_noise_reduction: NotGivenOr[NoiseReductionType | NoiseReduction | InputAudioNoiseReduction | None] = NOT_GIVEN,
speed: NotGivenOr[float] = NOT_GIVEN,
tracing: NotGivenOr[Tracing | None] = NOT_GIVEN) ‑> None
Expand source code
def update_options(
    self,
    *,
    tool_choice: NotGivenOr[llm.ToolChoice | None] = NOT_GIVEN,
    voice: NotGivenOr[str] = NOT_GIVEN,
    turn_detection: NotGivenOr[RealtimeAudioInputTurnDetection | None] = NOT_GIVEN,
    max_response_output_tokens: NotGivenOr[int | Literal["inf"] | None] = NOT_GIVEN,
    input_audio_transcription: NotGivenOr[AudioTranscription | None] = NOT_GIVEN,
    input_audio_noise_reduction: NotGivenOr[
        NoiseReductionType | NoiseReduction | InputAudioNoiseReduction | None
    ] = NOT_GIVEN,
    speed: NotGivenOr[float] = NOT_GIVEN,
    tracing: NotGivenOr[Tracing | None] = NOT_GIVEN,
) -> None:
    session = RealtimeSessionCreateRequest(
        type="realtime",
    )
    has_changes = False

    if is_given(tool_choice):
        tool_choice = cast(Optional[llm.ToolChoice], tool_choice)
        self._realtime_model._opts.tool_choice = tool_choice
        session.tool_choice = to_oai_tool_choice(tool_choice)
        has_changes = True

    if is_given(max_response_output_tokens):
        self._realtime_model._opts.max_response_output_tokens = max_response_output_tokens  # type: ignore
        session.max_output_tokens = max_response_output_tokens  # type: ignore
        has_changes = True

    if is_given(tracing):
        self._realtime_model._opts.tracing = cast(Union[Tracing, None], tracing)
        session.tracing = cast(Union[Tracing, None], tracing)  # type: ignore
        has_changes = True

    has_audio_config = False
    audio_output = RealtimeAudioConfigOutput()
    audio_input = RealtimeAudioConfigInput()
    audio_config = RealtimeAudioConfig(
        output=audio_output,
        input=audio_input,
    )

    if is_given(voice):
        self._realtime_model._opts.voice = voice
        audio_output.voice = voice
        has_audio_config = True

    if is_given(turn_detection):
        self._realtime_model._opts.turn_detection = turn_detection  # type: ignore
        audio_input.turn_detection = turn_detection  # type: ignore
        has_audio_config = True

    if is_given(input_audio_transcription):
        self._realtime_model._opts.input_audio_transcription = input_audio_transcription
        audio_input.transcription = input_audio_transcription
        has_audio_config = True

    if is_given(input_audio_noise_reduction):
        input_audio_noise_reduction = to_noise_reduction(input_audio_noise_reduction)  # type: ignore
        self._realtime_model._opts.input_audio_noise_reduction = input_audio_noise_reduction
        audio_input.noise_reduction = input_audio_noise_reduction
        has_audio_config = True

    if is_given(speed):
        self._realtime_model._opts.speed = speed
        audio_output.speed = speed
        has_audio_config = True

    if has_audio_config:
        session.audio = audio_config
        has_changes = True

    if has_changes:
        self.send_event(
            SessionUpdateEvent(
                type="session.update",
                session=session,
                event_id=utils.shortuuid("options_update_"),
            )
        )
async def update_tools(self, tools: list[llm.Tool]) ‑> None
Expand source code
async def update_tools(self, tools: list[llm.Tool]) -> None:
    async with self._update_fnc_ctx_lock:
        ev = self._create_tools_update_event(tools)
        self.send_event(ev)

        retained_tool_names: set[str] = set()
        for t in ev["session"]["tools"]:
            if name := t.get("name"):
                retained_tool_names.add(name)
            # TODO(dz): handle MCP tools
        retained_tools = [
            tool
            for tool in tools
            if (
                isinstance(tool, (llm.FunctionTool, llm.RawFunctionTool))
                and tool.info.name in retained_tool_names
            )
            or isinstance(tool, llm.ProviderTool)
        ]
        self._tools = llm.ToolContext(retained_tools)

Inherited members

class TurnDetection (**data: Any)
Expand source code
class TurnDetection(BaseModel):
    create_response: Optional[bool] = None
    """
    Whether or not to automatically generate a response when a VAD stop event
    occurs.
    """

    eagerness: Optional[Literal["low", "medium", "high", "auto"]] = None
    """Used only for `semantic_vad` mode.

    The eagerness of the model to respond. `low` will wait longer for the user to
    continue speaking, `high` will respond more quickly. `auto` is the default and
    is equivalent to `medium`.
    """

    interrupt_response: Optional[bool] = None
    """
    Whether or not to automatically interrupt any ongoing response with output to
    the default conversation (i.e. `conversation` of `auto`) when a VAD start event
    occurs.
    """

    prefix_padding_ms: Optional[int] = None
    """Used only for `server_vad` mode.

    Amount of audio to include before the VAD detected speech (in milliseconds).
    Defaults to 300ms.
    """

    silence_duration_ms: Optional[int] = None
    """Used only for `server_vad` mode.

    Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms.
    With shorter values the model will respond more quickly, but may jump in on
    short pauses from the user.
    """

    threshold: Optional[float] = None
    """Used only for `server_vad` mode.

    Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher
    threshold will require louder audio to activate the model, and thus might
    perform better in noisy environments.
    """

    type: Optional[Literal["server_vad", "semantic_vad"]] = None
    """Type of turn detection."""

Usage docs: https://docs.pydantic.dev/2.10/concepts/models/

A base class for creating Pydantic models.

Attributes

__class_vars__
The names of the class variables defined on the model.
__private_attributes__
Metadata about the private attributes of the model.
__signature__
The synthesized __init__ [Signature][inspect.Signature] of the model.
__pydantic_complete__
Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__
The core schema of the model.
__pydantic_custom_init__
Whether the model has a custom __init__ function.
__pydantic_decorators__
Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
__pydantic_generic_metadata__
Metadata for generic models; contains data used for a similar purpose to args, origin, parameters in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__
Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__
The name of the post-init method for the model, if defined.
__pydantic_root_model__
Whether the model is a [RootModel][pydantic.root_model.RootModel].
__pydantic_serializer__
The pydantic-core SchemaSerializer used to dump instances of the model.
__pydantic_validator__
The pydantic-core SchemaValidator used to validate instances of the model.
__pydantic_fields__
A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects.
__pydantic_computed_fields__
A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
__pydantic_extra__
A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.
__pydantic_fields_set__
The names of fields explicitly set during instantiation.
__pydantic_private__
Values of private attributes set on the model instance.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Ancestors

  • openai.BaseModel
  • pydantic.main.BaseModel

Class variables

var create_response : bool | None

Whether or not to automatically generate a response when a VAD stop event occurs.

var eagerness : Literal['low', 'medium', 'high', 'auto'] | None

Used only for semantic_vad mode.

The eagerness of the model to respond. low will wait longer for the user to continue speaking, high will respond more quickly. auto is the default and is equivalent to medium.

var interrupt_response : bool | None

Whether or not to automatically interrupt any ongoing response with output to the default conversation (i.e. conversation of auto) when a VAD start event occurs.

var model_config
var prefix_padding_ms : int | None

Used only for server_vad mode.

Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms.

var silence_duration_ms : int | None

Used only for server_vad mode.

Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user.

var threshold : float | None

Used only for server_vad mode.

Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments.

var type : Literal['server_vad', 'semantic_vad'] | None

Type of turn detection.

class WebSearch
Expand source code
@dataclass(slots=True)
class WebSearch(XAITool):
    """Enable web search tool for real-time internet searches."""

    def to_dict(self) -> dict[str, Any]:
        return {"type": "web_search"}

Enable web search tool for real-time internet searches.

Ancestors

  • XAITool
  • livekit.agents.llm.tool_context.ProviderTool
  • livekit.agents.llm.tool_context.Tool
  • abc.ABC

Methods

def to_dict(self) ‑> dict[str, typing.Any]
Expand source code
def to_dict(self) -> dict[str, Any]:
    return {"type": "web_search"}
class XSearch (allowed_x_handles: list[str] | None = None)
Expand source code
@dataclass(slots=True)
class XSearch(XAITool):
    """Enable X (Twitter) search tool for searching posts."""

    allowed_x_handles: list[str] | None = None

    def to_dict(self) -> dict[str, Any]:
        result: dict[str, Any] = {"type": "x_search"}
        if self.allowed_x_handles:
            result["allowed_x_handles"] = self.allowed_x_handles
        return result

Enable X (Twitter) search tool for searching posts.

Ancestors

  • XAITool
  • livekit.agents.llm.tool_context.ProviderTool
  • livekit.agents.llm.tool_context.Tool
  • abc.ABC

Instance variables

var allowed_x_handles : list[str] | None
Expand source code
@dataclass(slots=True)
class XSearch(XAITool):
    """Enable X (Twitter) search tool for searching posts."""

    allowed_x_handles: list[str] | None = None

    def to_dict(self) -> dict[str, Any]:
        result: dict[str, Any] = {"type": "x_search"}
        if self.allowed_x_handles:
            result["allowed_x_handles"] = self.allowed_x_handles
        return result

Methods

def to_dict(self) ‑> dict[str, typing.Any]
Expand source code
def to_dict(self) -> dict[str, Any]:
    result: dict[str, Any] = {"type": "x_search"}
    if self.allowed_x_handles:
        result["allowed_x_handles"] = self.allowed_x_handles
    return result